These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24681375)

  • 1. Effect of amorphous phases during the hydraulic conversion of α-TCP into calcium-deficient hydroxyapatite.
    Hurle K; Neubauer J; Bohner M; Doebelin N; Goetz-Neunhoeffer F
    Acta Biomater; 2014 Sep; 10(9):3931-41. PubMed ID: 24681375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calorimetry investigations of milled α-tricalcium phosphate (α-TCP) powders to determine the formation enthalpies of α-TCP and X-ray amorphous tricalcium phosphate.
    Hurle K; Neubauer J; Bohner M; Doebelin N; Goetz-Neunhoeffer F
    Acta Biomater; 2015 Sep; 23():338-346. PubMed ID: 26026302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydration mechanism of partially amorphized β-tricalcium phosphate.
    Hurle K; Neubauer J; Goetz-Neunhoeffer F
    Acta Biomater; 2017 May; 54():429-440. PubMed ID: 28288934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallized nano-sized alpha-tricalcium phosphate from amorphous calcium phosphate: microstructure, cementation and cell response.
    Vecbiskena L; Gross KA; Riekstina U; Yang TC
    Biomed Mater; 2015 Apr; 10(2):025009. PubMed ID: 25886478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alpha-tricalcium phosphate (α-TCP): solid state synthesis from different calcium precursors and the hydraulic reactivity.
    Cicek G; Aksoy EA; Durucan C; Hasirci N
    J Mater Sci Mater Med; 2011 Apr; 22(4):809-17. PubMed ID: 21445656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlating crystallinity and reactivity in an alpha-tricalcium phosphate.
    Camiré CL; Gbureck U; Hirsiger W; Bohner M
    Biomaterials; 2005 Jun; 26(16):2787-94. PubMed ID: 15603774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a novel calcium phosphate/sulphate bone cement.
    Nilsson M; Fernández E; Sarda S; Lidgren L; Planell JA
    J Biomed Mater Res; 2002 Sep; 61(4):600-7. PubMed ID: 12115450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase development and sintering behaviour of biphasic HA-TCP calcium phosphate materials prepared from hydroxyapatite and bioactive glass.
    Behnamghader A; Bagheri N; Raissi B; Moztarzadeh F
    J Mater Sci Mater Med; 2008 Jan; 19(1):197-201. PubMed ID: 17597356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the reactivity and in vitro bioactivity of Sr-substituted alpha-TCP cements.
    Saint-Jean SJ; Camiré CL; Nevsten P; Hansen S; Ginebra MP
    J Mater Sci Mater Med; 2005 Nov; 16(11):993-1001. PubMed ID: 16388381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an alpha-TCP paste.
    Almirall A; Larrecq G; Delgado JA; Martínez S; Planell JA; Ginebra MP
    Biomaterials; 2004 Aug; 25(17):3671-80. PubMed ID: 15020142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of novel biphasic calcium phosphate powders (alpha-TCP/HA) derived from carbonated amorphous calcium phosphates.
    Li Y; Kong F; Weng W
    J Biomed Mater Res B Appl Biomater; 2009 May; 89(2):508-517. PubMed ID: 18937266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of amorphous TCP nanoparticles to micron-sized alpha-TCP as starting materials for calcium phosphate cements.
    Brunner TJ; Bohner M; Dora C; Gerber C; Stark WJ
    J Biomed Mater Res B Appl Biomater; 2007 Nov; 83(2):400-7. PubMed ID: 17410573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction kinetics of dual setting α-tricalcium phosphate cements.
    Hurle K; Christel T; Gbureck U; Moseke C; Neubauer J; Goetz-Neunhoeffer F
    J Mater Sci Mater Med; 2016 Jan; 27(1):1. PubMed ID: 26610924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of crystallinity on strength development of alpha-TCP bone substitutes.
    Camiré CL; Nevsten P; Lidgren L; McCarthy I
    J Biomed Mater Res B Appl Biomater; 2006 Oct; 79(1):159-65. PubMed ID: 16615072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical characterization of hydroxyapatite obtained by wet chemistry in the presence of V, Co, and Cu ions.
    Moseke C; Gelinsky M; Groll J; Gbureck U
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1654-61. PubMed ID: 23827620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Si substitution on the reactivity of α-tricalcium phosphate.
    Motisuke M; Mestres G; Renó CO; Carrodeguas RG; Zavaglia CAC; Ginebra MP
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():816-821. PubMed ID: 28415534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of low-crystallinity hydroxyapatite foam based on the setting reaction of alpha-tricalcium phosphate foam.
    Karashima S; Takeuchi A; Matsuya S; Udoh K; Koyano K; Ishikawa K
    J Biomed Mater Res A; 2009 Mar; 88(3):628-33. PubMed ID: 18314899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and in vitro evaluation of biphasic α-tricalcium phosphate/β-tricalcium phosphate cement.
    Arahira T; Maruta M; Matsuya S
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():478-484. PubMed ID: 28254321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical activation and cement formation of beta-tricalcium phosphate.
    Gbureck U; Grolms O; Barralet JE; Grover LM; Thull R
    Biomaterials; 2003 Oct; 24(23):4123-31. PubMed ID: 12853242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydration characteristics of alpha-tricalcium phosphates: Comparison of preparation routes.
    Camire' CL; Jegou Saint-Jean S; Hansen S; McCarthy I; Lidgren L
    J Appl Biomater Biomech; 2005; 3(2):106-11. PubMed ID: 20799230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.