These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 24681621)
1. Characterization and evolution of tetrameric photosystem I from the thermophilic cyanobacterium Chroococcidiopsis sp TS-821. Li M; Semchonok DA; Boekema EJ; Bruce BD Plant Cell; 2014 Mar; 26(3):1230-45. PubMed ID: 24681621 [TBL] [Abstract][Full Text] [Related]
2. Cryo-EM structure of a tetrameric photosystem I from Semchonok DA; Mondal J; Cooper CJ; Schlum K; Li M; Amin M; Sorzano COS; Ramírez-Aportela E; Kastritis PL; Boekema EJ; Guskov A; Bruce BD Plant Commun; 2022 Jan; 3(1):100248. PubMed ID: 35059628 [TBL] [Abstract][Full Text] [Related]
3. Comparisons of Electron Transfer Reactions in a Cyanobacterial Tetrameric and Trimeric Photosystem I Complexes. Shelaev IV; Mamedov MD; Gostev FE; Aybush AV; Li M; Nguyen J; Bruce BD; Nadtochenko VA Photochem Photobiol; 2018 May; 94(3):564-569. PubMed ID: 29315587 [TBL] [Abstract][Full Text] [Related]
4. Physiological and evolutionary implications of tetrameric photosystem I in cyanobacteria. Li M; Calteau A; Semchonok DA; Witt TA; Nguyen JT; Sassoon N; Boekema EJ; Whitelegge J; Gugger M; Bruce BD Nat Plants; 2019 Dec; 5(12):1309-1319. PubMed ID: 31819227 [TBL] [Abstract][Full Text] [Related]
5. Cryo-EM structure of a tetrameric cyanobacterial photosystem I complex reveals novel subunit interactions. Semchonok DA; Li M; Bruce BD; Oostergetel GT; Boekema EJ Biochim Biophys Acta; 2016 Sep; 1857(9):1619-1626. PubMed ID: 27392600 [TBL] [Abstract][Full Text] [Related]
6. Trimeric forms of the photosystem I reaction center complex pre-exist in the membranes of the cyanobacterium Spirulina platensis. Shubin VV; Tsuprun VL; Bezsmertnaya IN; Karapetyan NV FEBS Lett; 1993 Nov; 334(1):79-82. PubMed ID: 8224233 [TBL] [Abstract][Full Text] [Related]
7. Structural and functional insights into the tetrameric photosystem I from heterocyst-forming cyanobacteria. Zheng L; Li Y; Li X; Zhong Q; Li N; Zhang K; Zhang Y; Chu H; Ma C; Li G; Zhao J; Gao N Nat Plants; 2019 Oct; 5(10):1087-1097. PubMed ID: 31595062 [TBL] [Abstract][Full Text] [Related]
8. Mass spectrometry and spectroscopic characterization of a tetrameric photosystem I supercomplex from Leptolyngbya ohadii, a desiccation-tolerant cyanobacterium. Niedzwiedzki DM; Magdaong NCM; Su X; Adir N; Keren N; Liu H Biochim Biophys Acta Bioenerg; 2023 Apr; 1864(2):148955. PubMed ID: 36708912 [TBL] [Abstract][Full Text] [Related]
9. Mutational analysis of photosystem I polypeptides in the cyanobacterium Synechocystis sp. PCC 6803. Targeted inactivation of psaI reveals the function of psaI in the structural organization of psaL. Xu Q; Hoppe D; Chitnis VP; Odom WR; Guikema JA; Chitnis PR J Biol Chem; 1995 Jul; 270(27):16243-50. PubMed ID: 7608190 [TBL] [Abstract][Full Text] [Related]
10. Novel supercomplex organization of photosystem I in Anabaena and Cyanophora paradoxa. Watanabe M; Kubota H; Wada H; Narikawa R; Ikeuchi M Plant Cell Physiol; 2011 Jan; 52(1):162-8. PubMed ID: 21118826 [TBL] [Abstract][Full Text] [Related]
11. Structure and function of wild-type and subunit-depleted photosystem I in Synechocystis. Malavath T; Caspy I; Netzer-El SY; Klaiman D; Nelson N Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):645-654. PubMed ID: 29414678 [TBL] [Abstract][Full Text] [Related]
12. Crystal structures of virus-like photosystem I complexes from the mesophilic cyanobacterium Synechocystis PCC 6803. Mazor Y; Nataf D; Toporik H; Nelson N Elife; 2013 Jan; 3():e01496. PubMed ID: 24473073 [TBL] [Abstract][Full Text] [Related]
13. Genetic analysis of the Photosystem I subunits from the red alga, Galdieria sulphuraria. Vanselow C; Weber AP; Krause K; Fromme P Biochim Biophys Acta; 2009 Jan; 1787(1):46-59. PubMed ID: 19007746 [TBL] [Abstract][Full Text] [Related]
14. The siderophilic cyanobacterium Leptolyngbya sp. strain JSC-1 acclimates to iron starvation by expressing multiple isiA-family genes. Shen G; Gan F; Bryant DA Photosynth Res; 2016 Jun; 128(3):325-40. PubMed ID: 27071628 [TBL] [Abstract][Full Text] [Related]
15. Attachment of phycobilisomes in an antenna-photosystem I supercomplex of cyanobacteria. Watanabe M; Semchonok DA; Webber-Birungi MT; Ehira S; Kondo K; Narikawa R; Ohmori M; Boekema EJ; Ikeuchi M Proc Natl Acad Sci U S A; 2014 Feb; 111(7):2512-7. PubMed ID: 24550276 [TBL] [Abstract][Full Text] [Related]
16. Monomeric and trimeric forms of photosystem I reaction center of Mastigocladus laminosus: crystallization and preliminary characterization. Almog O; Shoham G; Michaeli D; Nechushtai R Proc Natl Acad Sci U S A; 1991 Jun; 88(12):5312-6. PubMed ID: 1905020 [TBL] [Abstract][Full Text] [Related]
17. Zeaxanthin and echinenone modify the structure of photosystem I trimer in Synechocystis sp. PCC 6803. Vajravel S; Kis M; Kłodawska K; Laczko-Dobos H; Malec P; Kovács L; Gombos Z; Toth TN Biochim Biophys Acta Bioenerg; 2017 Jul; 1858(7):510-518. PubMed ID: 28478116 [TBL] [Abstract][Full Text] [Related]
18. PsaL subunit is required for the formation of photosystem I trimers in the cyanobacterium Synechocystis sp. PCC 6803. Chitnis VP; Chitnis PR FEBS Lett; 1993 Dec; 336(2):330-4. PubMed ID: 8262256 [TBL] [Abstract][Full Text] [Related]
19. Phosphatidylglycerol is essential for oligomerization of photosystem I reaction center. Domonkos I; Malec P; Sallai A; Kovács L; Itoh K; Shen G; Ughy B; Bogos B; Sakurai I; Kis M; Strzalka K; Wada H; Itoh S; Farkas T; Gombos Z Plant Physiol; 2004 Apr; 134(4):1471-8. PubMed ID: 15064373 [TBL] [Abstract][Full Text] [Related]
20. Iron deficiency in cyanobacteria causes monomerization of photosystem I trimers and reduces the capacity for state transitions and the effective absorption cross section of photosystem I in vivo. Ivanov AG; Krol M; Sveshnikov D; Selstam E; Sandström S; Koochek M; Park YI; Vasil'ev S; Bruce D; Oquist G; Huner NP Plant Physiol; 2006 Aug; 141(4):1436-45. PubMed ID: 16798943 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]