These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24681672)

  • 1. Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications.
    Coluccio ML; Gentile F; Francardi M; Perozziello G; Malara N; Candeloro P; Di Fabrizio E
    Sensors (Basel); 2014 Mar; 14(4):6056-83. PubMed ID: 24681672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructured plasmonic substrates for use as SERS sensors.
    Jeon TY; Kim DJ; Park SG; Kim SH; Kim DH
    Nano Converg; 2016; 3(1):18. PubMed ID: 28191428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic nano-protrusions: hierarchical nanostructures for single-molecule Raman spectroscopy.
    Basuray S; Pathak A; Bok S; Chen B; Hamm SC; Mathai CJ; Guha S; Gangopadhyay K; Gangopadhyay S
    Nanotechnology; 2017 Jan; 28(2):025302. PubMed ID: 27905323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic study of silver nanoparticle formation on conducting polymer surfaces.
    Mack NH; Bailey JA; Doorn SK; Chen CA; Gau HM; Xu P; Williams DJ; Akhadov EA; Wang HL
    Langmuir; 2011 Apr; 27(8):4979-85. PubMed ID: 21434643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering.
    Wang AX; Kong X
    Materials (Basel); 2015 Jun; 8(6):3024-3052. PubMed ID: 26900428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-substructured plasmonic pore arrays: a robust, low cost route to reproducible hierarchical structures extended across macroscopic dimensions.
    Gimenez AV; Kho KW; Keyes TE
    Nanoscale Adv; 2020 Oct; 2(10):4740-4756. PubMed ID: 36132883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic tooth-multilayer structure with high enhancement field for surface enhanced Raman spectroscopy.
    Huang LC; Wang Z; Clark JK; Ho YL; Delaunay JJ
    Nanotechnology; 2017 Mar; 28(12):125206. PubMed ID: 28170345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale self-organized gold nanostructures with bidirectional plasmon resonances for SERS.
    Schreiber B; Gkogkou D; Dedelaite L; Kerbusch J; Hübner R; Sheremet E; Zahn DRT; Ramanavicius A; Facsko S; Rodriguez RD
    RSC Adv; 2018 Jun; 8(40):22569-22576. PubMed ID: 35539709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps.
    Duan H; Hu H; Kumar K; Shen Z; Yang JK
    ACS Nano; 2011 Sep; 5(9):7593-600. PubMed ID: 21846105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing.
    Abu Hatab NA; Oran JM; Sepaniak MJ
    ACS Nano; 2008 Feb; 2(2):377-85. PubMed ID: 19206640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic surface-enhanced Raman scattering nano-substrates for detection of anionic environmental contaminants: Current progress and future perspectives.
    Kitaw SL; Birhan YS; Tsai HC
    Environ Res; 2023 Mar; 221():115247. PubMed ID: 36640935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembled quasi-hexagonal arrays of gold nanoparticles with small gaps for surface-enhanced Raman spectroscopy.
    Gürdal E; Dickreuter S; Noureddine F; Bieschke P; Kern DP; Fleischer M
    Beilstein J Nanotechnol; 2018; 9():1977-1985. PubMed ID: 30116689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex-Morphology Metal-Based Nanostructures: Fabrication, Characterization, and Applications.
    Gentile A; Ruffino F; Grimaldi MG
    Nanomaterials (Basel); 2016 Jun; 6(6):. PubMed ID: 28335236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoimprinted Patterned Pillar Substrates for Surface-Enhanced Raman Scattering Applications.
    Chen J; Li Y; Huang K; Wang P; He L; Carter KR; Nugen SR
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):22106-13. PubMed ID: 26402032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple synthetic route for SERS-active gold nanoparticles substrate with controlled shape and organization.
    Bechelany M; Brodard P; Elias J; Brioude A; Michler J; Philippe L
    Langmuir; 2010 Sep; 26(17):14364-71. PubMed ID: 20715801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extended domains of organized nanorings of silver grains as surface-enhanced Raman scattering sensors for molecular detection.
    Bechelany M; Brodard P; Philippe L; Michler J
    Nanotechnology; 2009 Nov; 20(45):455302. PubMed ID: 19834249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic coupling on dielectric nanowire core-metal sheath composites.
    Qi H; Alexson D; Glembocki O; Prokes SM
    Nanotechnology; 2010 Feb; 21(8):85705. PubMed ID: 20097974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallinity as a factor of SERS stability of silver nanoparticles formed by Ar
    Doroshina NV; Streletskiy OA; Zavidovskiy IA; Tatmyshevskiy MK; Tselikov GI; Kapitanova OO; Syuy AV; Romanov R; Mishra P; Bobrovs V; Markeev AM; Yakubovsky DI; Veselova IA; Arsenin AV; Volkov VS; Novikov SM
    Heliyon; 2024 Mar; 10(6):e27538. PubMed ID: 38509939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D aluminum/silver hierarchical nanostructure with large areas of dense hot spots for surface-enhanced raman scattering.
    Zhao N; Li H; Xie Y; Feng Z; Wang Z; Yang Z; Yan X; Wang W; Tian C; Yu H
    Electrophoresis; 2019 Dec; 40(23-24):3123-3131. PubMed ID: 31576580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.