These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24681674)

  • 21. Precise Point Positioning Using Triple GNSS Constellations in Various Modes.
    Afifi A; El-Rabbany A
    Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27240376
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multipath estimation in urban environments from joint GNSS receivers and LiDAR sensors.
    Ali K; Chen X; Dovis F; De Castro D; Fernández AJ
    Sensors (Basel); 2012 Oct; 12(11):14592-603. PubMed ID: 23202177
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-Epoch, Single-Frequency Multi-GNSS L5 RTK under High-Elevation Masking.
    Wang K; Chen P; Teunissen PJG
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832343
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comprehensive Comparisons of Satellite Data, Signals, and Measurements between the BeiDou Navigation Satellite System and the Global Positioning System.
    Jan SS; Tao AL
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27187403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Implementation and Analysis of Tightly Coupled Global Navigation Satellite System Precise Point Positioning/Inertial Navigation System (GNSS PPP/INS) with Insufficient Satellites for Land Vehicle Navigation.
    Liu Y; Liu F; Gao Y; Zhao L
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Performance Limits of GNSS Code-based Precise Positioning: GPS, Galileo & Meta-Signals.
    Das P; Ortega L; Vilà-Valls J; Vincent F; Chaumette E; Davain L
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295045
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Optimized Vector Tracking Architecture for Pseudo-Random Pulsing CDMA Signals.
    Tao L; Li G; Sun J; Zhu B
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34198507
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sturdy positioning with high sensitivity GPS sensors under adverse conditions.
    Trajkovski KK; Sterle O; Stopar B
    Sensors (Basel); 2010; 10(9):8332-47. PubMed ID: 22163657
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring GNSS Crowdsourcing Feasibility: Combinations of Measurements for Modeling Smartphone and Higher End GNSS Receiver Performance.
    Lehtola VV; Söderholm S; Koivisto M; Montloin L
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31323965
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Time transfer using multi-channel GPS receivers.
    Levine J
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(2):392-8. PubMed ID: 18238436
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Framework to Emulate Spacecraft Orbital Positioning Using GNSS Hardware in the Loop.
    Forero D; Esteban S; Rodríguez-Polo Ó
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679680
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of Accuracy and Reliability of Different Types of GPS Receivers.
    Rychlicki M; Kasprzyk Z; Rosiński A
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33203054
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of BeiDou-3 and Multi-GNSS Precise Point Positioning Performance.
    Jiao G; Song S; Ge Y; Su K; Liu Y
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31159245
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Benefits of Multi-Constellation/Multi-Frequency GNSS in a Tightly Coupled GNSS/IMU/Odometry Integration Algorithm.
    Reuper B; Becker M; Leinen S
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30213078
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A simple method to improve autonomous GPS positioning for tractors.
    Gomez-Gil J; Alonso-Garcia S; Gómez-Gil FJ; Stombaugh T
    Sensors (Basel); 2011; 11(6):5630-44. PubMed ID: 22163917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overcoming the challenges of BeiDou receiver implementation.
    Bhuiyan MZ; Söderholm S; Thombre S; Ruotsalainen L; Kuusniemi H
    Sensors (Basel); 2014 Nov; 14(11):22082-98. PubMed ID: 25421735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinematic ME-MAFA for Pseudolite Carrier-Phase Ambiguity Resolution in Precise Single-Point Positioning.
    Liu K; Guo X; Yang J; Li X; Liu C; Tang Y; Meng Z; Yan E
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33143220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New Strategy for Improving the Accuracy of Aircraft Positioning Based on GPS SPP Solution.
    Krasuski K; Ciećko A; Bakuła M; Wierzbicki D
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32878144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characteristics of BeiDou Navigation Satellite System (BDS) Code Observations for Different Receiver Types and Their Influence on Wide-Lane Ambiguity Resolution.
    Lu Y; Wang Z; Ji S; Chen W; Weng D
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30347744
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and Performance Analysis of Signal Acquisition and Doppler Tracking in LEO Augmented GNSS Receiver.
    Cheng L; Dai Y; Guo W; Zheng J
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33450954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.