These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24681924)

  • 1. Safety ensuring retinal prosthesis with precise charge balance and low power consumption.
    Chun H; Yang Y; Lehmann T
    IEEE Trans Biomed Circuits Syst; 2014 Feb; 8(1):108-18. PubMed ID: 24681924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Low-Power Blocking-Capacitor-Free Charge-Balanced Electrode-Stimulator Chip With Less Than 6 nA DC Error for 1-mA Full-Scale Stimulation.
    Ji-Jon Sit ; Sarpeshkar R
    IEEE Trans Biomed Circuits Syst; 2007 Sep; 1(3):172-83. PubMed ID: 23852411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A High-Voltage-Tolerant and Precise Charge-Balanced Neuro-Stimulator in Low Voltage CMOS Process.
    Luo Z; Ker MD
    IEEE Trans Biomed Circuits Syst; 2016 Dec; 10(6):1087-1099. PubMed ID: 27046880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A precise charge balancing and compliance voltage monitoring stimulator front-end for 1024-electrodes retinal prosthesis.
    Chun H; Tran N; Yang Y; Kavehei O; Bai S; Skafidas S
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3001-4. PubMed ID: 23366556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis.
    Williams I; Constandinou T
    IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):129-39. PubMed ID: 23853295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 16-Channel biphasic current-mode programmable charge balanced neural stimulation.
    Li X; Zhong S; Morizio J
    Biomed Eng Online; 2017 Aug; 16(1):104. PubMed ID: 28806960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation.
    Arfin SK; Sarpeshkar R
    IEEE Trans Biomed Circuits Syst; 2012 Feb; 6(1):1-14. PubMed ID: 23852740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Fully Integrated, Power-Efficient, 0.07-2.08 mA, High-Voltage Neural Stimulator in a Standard CMOS Process.
    Palomeque-Mangut D; Rodríguez-Vázquez Á; Delgado-Restituto M
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical Characterization of 3D Au Microelectrodes for Use in Retinal Prostheses.
    Lee S; Ahn JH; Seo JM; Chung H; Cho DI
    Sensors (Basel); 2015 Jun; 15(6):14345-55. PubMed ID: 26091397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current stimulator IC with adaptive supply regulator for visual prostheses.
    Ko H; Lee SM; Ahn JH; Hong SJ; Yoo HJ; Jung SW; Park SK; Cho DI
    J Biomed Nanotechnol; 2013 Jun; 9(6):992-7. PubMed ID: 23858963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Required matching accuracy of biphasic current pulse in multi-channel current mode bipolar stimulation for safety.
    Chun H; Yang Y; Lehmann T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3025-8. PubMed ID: 23366562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-controlled biphasic current stimulator IC using CMOS image sensors for high-resolution retinal prosthesis and in vitro experimental results with rd1 mouse.
    Oh S; Ahn JH; Lee S; Ko H; Seo JM; Goo YS; Cho DI
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):70-9. PubMed ID: 25020014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 8-Channel Biphasic Current Stimulator Optimized for Retinal Prostheses.
    Lee CE; Jung Y; Song YK
    J Nanosci Nanotechnol; 2021 Aug; 21(8):4298-4302. PubMed ID: 33714317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Multi-Channel Stimulator With High-Resolution Time-to-Current Conversion for Vagal-Cardiac Neuromodulation.
    Wu Y; Jiang D; Demosthenous A
    IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1186-1195. PubMed ID: 34982691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully Integrated Light-Sensing Stimulator Design for Subretinal Implants.
    Kang H; Abbasi WH; Kim SW; Kim J
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30696016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A low power MICS band phase-locked loop for high resolution retinal prosthesis.
    Yang J; Skafidas E
    IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):513-25. PubMed ID: 23893210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing.
    Hsu WY; Schmid A
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):878-888. PubMed ID: 28715337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile Stimulation Back-End With Programmable Exponential Current Pulse Shapes for a Retinal Visual Prosthesis.
    Maghami MH; Sodagar AM; Sawan M
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1243-1253. PubMed ID: 27046904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A charge-metering method for voltage-mode neural stimulation.
    Luan S; Constandinou TG
    J Neurosci Methods; 2014 Mar; 224():39-47. PubMed ID: 24360970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A zero-voltage switching technique for minimizing the current-source power of implanted stimulators.
    Çilingiroğlu U; İpek S
    IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):469-79. PubMed ID: 23893206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.