BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 24682039)

  • 1. Temperature and cyanobacterial bloom biomass influence phosphorous cycling in eutrophic lake sediments.
    Chen M; Ye TR; Krumholz LR; Jiang HL
    PLoS One; 2014; 9(3):e93130. PubMed ID: 24682039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorus mobility among sediments, water and cyanobacteria enhanced by cyanobacteria blooms in eutrophic Lake Dianchi.
    Cao X; Wang Y; He J; Luo X; Zheng Z
    Environ Pollut; 2016 Dec; 219():580-587. PubMed ID: 27318542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decomposition of cyanobacterial bloom contributes to the formation and distribution of iron-bound phosphorus (Fe-P): Insight for cycling mechanism of internal phosphorus loading.
    Wang Z; Huang S; Li D
    Sci Total Environ; 2019 Feb; 652():696-708. PubMed ID: 30380477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of accumulated cyanobacterial bloom biomass contents on the characteristics of surface fluid sediments in a eutrophic shallow lake.
    Wang C; Xu D; Bai L; Zhu B; Huang L; Jiang H
    J Environ Manage; 2022 Apr; 308():114644. PubMed ID: 35144061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy.
    Paerl HW; Xu H; McCarthy MJ; Zhu G; Qin B; Li Y; Gardner WS
    Water Res; 2011 Feb; 45(5):1973-83. PubMed ID: 20934736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing sulfate concentrations result in higher sulfide production and phosphorous mobilization in a shallow eutrophic freshwater lake.
    Chen M; Li XH; He YH; Song N; Cai HY; Wang C; Li YT; Chu HY; Krumholz LR; Jiang HL
    Water Res; 2016 Jun; 96():94-104. PubMed ID: 27023925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyanobacterial organic matter (COM) positive feedback aggravates lake eutrophication by changing the phosphorus release characteristics of sediments.
    Wang J; Chen Q; Huang S; Wang Z; Li D
    Sci Total Environ; 2023 Sep; 892():164540. PubMed ID: 37270020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorus released from sediment of Dianchi Lake and its effect on growth of Microcystis aeruginosa.
    Liu J; Luo X; Zhang N; Wu Y
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16321-8. PubMed ID: 27155834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sediment potentially controls in-lake phosphorus cycling and harmful cyanobacteria in shallow, eutrophic Utah Lake.
    Randall MC; Carling GT; Dastrup DB; Miller T; Nelson ST; Rey KA; Hansen NC; Bickmore BR; Aanderud ZT
    PLoS One; 2019; 14(2):e0212238. PubMed ID: 30763352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. No enhancement of cyanobacterial bloom biomass decomposition by sediment microbial fuel cell (SMFC) at different temperatures.
    Ye TR; Song N; Chen M; Yan ZS; Jiang HL
    Environ Pollut; 2016 Nov; 218():59-65. PubMed ID: 27552038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal iron‑sulfur interactions and the stimulated phosphorus mobilization in freshwater lake sediments.
    Zhao Y; Wu S; Yu M; Zhang Z; Wang X; Zhang S; Wang G
    Sci Total Environ; 2021 May; 768():144336. PubMed ID: 33453539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfur cycling in freshwater sediments: A cryptic driving force of iron deposition and phosphorus mobilization.
    Wu S; Zhao Y; Chen Y; Dong X; Wang M; Wang G
    Sci Total Environ; 2019 Mar; 657():1294-1303. PubMed ID: 30677896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of algal bloom degradation on nutrient release at the sediment-water interface in Lake Taihu, China.
    Zhu M; Zhu G; Zhao L; Yao X; Zhang Y; Gao G; Qin B
    Environ Sci Pollut Res Int; 2013 Mar; 20(3):1803-11. PubMed ID: 22825639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High sulfide production induced by algae decomposition and its potential stimulation to phosphorus mobility in sediment.
    Zhao Y; Zhang Z; Wang G; Li X; Ma J; Chen S; Deng H; Annalisa OH
    Sci Total Environ; 2019 Feb; 650(Pt 1):163-172. PubMed ID: 30196216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of bio-stable fluid sediment from accumulation of cyanobacterial bloom biomass under various water depths.
    Wang C; Tian L; Zhu B; Huang L; Wang C; Fang H; Jiang H
    Sci Total Environ; 2022 Jun; 827():154224. PubMed ID: 35240172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus mobilization in lake sediments: Experimental evidence of strong control by iron and negligible influences of manganese redox reactions.
    Chen M; Ding S; Wu Y; Fan X; Jin Z; Tsang DCW; Wang Y; Zhang C
    Environ Pollut; 2019 Mar; 246():472-481. PubMed ID: 30583155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative contribution of iron reduction to sediments organic matter mineralization in contrasting habitats of a shallow eutrophic freshwater lake.
    Chen M; Jiang HL
    Environ Pollut; 2016 Jun; 213():904-912. PubMed ID: 27038578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origins and mobility of phosphorus forms in the sediments of Lakes Taihu and Chaohu, China.
    Huang QH; Wang ZJ; Wang DH; Wang CX; Ma M; Jin XC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(1):91-102. PubMed ID: 15663302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. To prevent the occurrence of black water agglomerate through delaying decomposition of cyanobacterial bloom biomass by sediment microbial fuel cell.
    Zhou YL; Jiang HL; Cai HY
    J Hazard Mater; 2015 Apr; 287():7-15. PubMed ID: 25621829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of Cyanobacterial Blooms in Eutrophic Lakes on Water Quality of Connected Rivers].
    Yu ML; Hong GX; Xu H; Zhu GW; Zhu MY; Quan QM
    Huan Jing Ke Xue; 2019 Feb; 40(2):603-613. PubMed ID: 30628322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.