BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 24682058)

  • 1. Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells.
    Ananth S; Vivek P; Arumanayagam T; Murugakoothan P
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():420-6. PubMed ID: 24682058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of Caesalpinia sappan heartwood extract as photo sensitizer for dye sensitized solar cells.
    Ananth S; Vivek P; Saravana Kumar G; Murugakoothan P
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():345-50. PubMed ID: 25233024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural dye sensitized TiO2 nanorods assembly of broccoli shape based solar cells.
    Yuvapragasam A; Muthukumarasamy N; Agilan S; Velauthapillai D; Senthil TS; Sundaram S
    J Photochem Photobiol B; 2015 Jul; 148():223-231. PubMed ID: 25974906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corrigendum to "Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells" [Spectrochim. Acta A Mol. Biomol. Spectrosc. 128 (2014) 420-426].
    Ananth S; Vivek P; Arumanayagam T; Murugakoothan P
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 143():324. PubMed ID: 28162266
    [No Abstract]   [Full Text] [Related]  

  • 5. Anatase TiO2 nanorod-decoration for highly efficient photoenergy conversion.
    Kim DH; Seong WM; Park IJ; Yoo ES; Shin SS; Kim JS; Jung HS; Lee S; Hong KS
    Nanoscale; 2013 Dec; 5(23):11725-32. PubMed ID: 24114150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spherical TiO2 aggregates with different building units for dye-sensitized solar cells.
    Liu Z; Su X; Hou G; Bi S; Xiao Z; Jia H
    Nanoscale; 2013 Sep; 5(17):8177-83. PubMed ID: 23892684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BaSnO3 perovskite nanoparticles for high efficiency dye-sensitized solar cells.
    Kim DW; Shin SS; Lee S; Cho IS; Kim DH; Lee CW; Jung HS; Hong KS
    ChemSusChem; 2013 Mar; 6(3):449-54. PubMed ID: 23417972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological construction of single-walled carbon nanotube electron transfer pathways in dye-sensitized solar cells.
    Inoue I; Watanabe K; Yamauchi H; Ishikawa Y; Yasueda H; Uraoka Y; Yamashita I
    ChemSusChem; 2014 Oct; 7(10):2805-10. PubMed ID: 25111295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eosin-Y sensitized core-shell TiO
    Manikandan VS; Palai AK; Mohanty S; Nayak SK
    J Photochem Photobiol B; 2018 Jun; 183():397-404. PubMed ID: 29778020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoporous submicrometer TiO(2) hollow spheres as scatterers in dye-sensitized solar cells.
    Dadgostar S; Tajabadi F; Taghavinia N
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):2964-8. PubMed ID: 22606936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution processable titanium dioxide precursor and nanoparticulated ink: application in Dye Sensitized Solar Cells.
    Bosch-Jimenez P; Yu Y; Lira-Cantu M; Domingo C; Ayllón JA
    J Colloid Interface Sci; 2014 Feb; 416():112-8. PubMed ID: 24326146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the rutile content on the photovoltaic performance of the dye-sensitized solar cells composed of mixed-phase TiO2 photoelectrodes.
    Yun TK; Park SS; Kim D; Shim JH; Bae JY; Huh S; Won YS
    Dalton Trans; 2012 Jan; 41(4):1284-8. PubMed ID: 22124477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospun hierarchical TiO2 nanorods with high porosity for efficient dye-sensitized solar cells.
    Chen HY; Zhang TL; Fan J; Kuang DB; Su CY
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9205-11. PubMed ID: 23962052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-treated TiO2 nanoparticles for dye-sensitized solar cells with remarkably enhanced performance.
    Xin X; Scheiner M; Ye M; Lin Z
    Langmuir; 2011 Dec; 27(23):14594-8. PubMed ID: 22013973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional organized mesoporous tin oxide films templated by graft copolymers for dye-sensitized solar cells.
    Park JT; Ahn SH; Roh DK; Lee CS; Kim JH
    ChemSusChem; 2014 Jul; 7(7):2037-47. PubMed ID: 24678065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of multi-porous layer for dye-sensitized solar cells by doping with TiO2 nanoparticles.
    Hsieh TL; Chu AK; Huang WY
    J Nanosci Nanotechnol; 2013 Jan; 13(1):365-9. PubMed ID: 23646739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization.
    Ohsaki Y; Masaki N; Kitamura T; Wada Y; Okamoto T; Sekino T; Niihara K; Yanagida S
    Phys Chem Chem Phys; 2005 Dec; 7(24):4157-63. PubMed ID: 16474882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of microwave plasma sintering for the fabrication of dye sensitized solar cell (DSSC) electrodes.
    Dembele A; Rahman M; MacElroy JM; Dowling DP
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4769-74. PubMed ID: 22905529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesoporous inverse opal TiO2 film as light scattering layer for dye-sensitized solar cell.
    Jin M; Kim SS; Yoon M; Li Z; Lee YY; Kim JM
    J Nanosci Nanotechnol; 2012 Jan; 12(1):815-21. PubMed ID: 22524063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A TiO2 Nanofiber-Carbon Nanotube-Composite Photoanode for Improved Efficiency in Dye-Sensitized Solar Cells.
    Macdonald TJ; Tune DD; Dewi MR; Gibson CT; Shapter JG; Nann T
    ChemSusChem; 2015 Oct; 8(20):3396-400. PubMed ID: 26383499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.