BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24682587)

  • 1. A new spiral microelectrode assembly for electroporation and impedance measurements of adherent cell monolayers.
    García-Sánchez T; Guitart M; Rosell-Ferrer J; Gómez-Foix AM; Bragós R
    Biomed Microdevices; 2014 Aug; 16(4):575-90. PubMed ID: 24682587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scanning electroporation of selected areas of adherent cell cultures.
    Olofsson J; Levin M; Strömberg A; Weber SG; Ryttsén F; Orwar O
    Anal Chem; 2007 Jun; 79(12):4410-8. PubMed ID: 17511419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfection of HeLa-cells with pEGFP plasmid by impedance power-assisted electroporation.
    Glahder J; Norrild B; Persson MB; Persson BR
    Biotechnol Bioeng; 2005 Nov; 92(3):267-76. PubMed ID: 16161165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmid DNA and siRNA transfection of intestinal epithelial monolayers by electroporation.
    Ghartey-Tagoe EB; Babbin BA; Nusrat A; Neish AS; Prausnitz MR
    Int J Pharm; 2006 Jun; 315(1-2):122-33. PubMed ID: 16564652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfer of small interfering RNA by single-cell electroporation in cerebellar cell cultures.
    Tanaka M; Yanagawa Y; Hirashima N
    J Neurosci Methods; 2009 Mar; 178(1):80-6. PubMed ID: 19114056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency of DNA transfection of rat heart myoblast cells H9c2(2-1) by either polyethyleneimine or electroporation.
    Liu YC; Lin WY; Jhang YR; Huang SH; Wu CP; Wu HT
    Appl Biochem Biotechnol; 2011 Aug; 164(7):1172-82. PubMed ID: 21360090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Space and time-resolved gene expression experiments on cultured mammalian cells by a single-cell electroporation microarray.
    Vassanelli S; Bandiera L; Borgo M; Cellere G; Santoni L; Bersani C; Salamon M; Zaccolo M; Lorenzelli L; Girardi S; Maschietto M; Dal Maschio M; Paccagnella A
    N Biotechnol; 2008 Jun; 25(1):55-67. PubMed ID: 18504020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpulse multifrequency electrical impedance measurements during electroporation of adherent differentiated myotubes.
    García-Sánchez T; Azan A; Leray I; Rosell-Ferrer J; Bragós R; Mir LM
    Bioelectrochemistry; 2015 Oct; 105():123-35. PubMed ID: 26123676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsystem for transfection of exogenous molecules with spatio-temporal control into adherent cells.
    Jain T; Muthuswamy J
    Biosens Bioelectron; 2007 Jan; 22(6):863-70. PubMed ID: 16635569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective gene transfer to solid tumors using different nonviral gene delivery techniques: electroporation, liposomes, and integrin-targeted vector.
    Cemazar M; Sersa G; Wilson J; Tozer GM; Hart SL; Grosel A; Dachs GU
    Cancer Gene Ther; 2002 Apr; 9(4):399-406. PubMed ID: 11960291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroporation of cells in microfluidic droplets.
    Zhan Y; Wang J; Bao N; Lu C
    Anal Chem; 2009 Mar; 81(5):2027-31. PubMed ID: 19199389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of electrically stimulated endocytosis in gene electrotransfer.
    Pavlin M; Pucihar G; Kandušer M
    Bioelectrochemistry; 2012 Feb; 83():38-45. PubMed ID: 21907005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic electroporation for delivery of small molecules and genes into cells using a common DC power supply.
    Wang HY; Lu C
    Biotechnol Bioeng; 2008 Jun; 100(3):579-86. PubMed ID: 18183631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromediated formation of DNA complexes with cell membranes and its consequences for gene delivery.
    Escoffre JM; Portet T; Favard C; Teissié J; Dean DS; Rols MP
    Biochim Biophys Acta; 2011 Jun; 1808(6):1538-43. PubMed ID: 21035428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dependence of efficiency of transmembrane molecular transfer using electroporation on medium viscosity.
    Sungailaitė S; Ruzgys P; Šatkauskienė I; Čepurnienė K; Šatkauskas S
    J Gene Med; 2015; 17(3-5):80-6. PubMed ID: 25761762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ electroporation of mammalian cells through SiO
    Maschietto M; Dal Maschio M; Girardi S; Vassanelli S
    Sci Rep; 2021 Jul; 11(1):15126. PubMed ID: 34302040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo electric field-mediated permeabilization, gene transfer, and expression.
    Golzio M; Rols MP; Teissié J
    Methods; 2004 Jun; 33(2):126-35. PubMed ID: 15121167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and implementation of a microelectrode assembly for use on noncontact in situ electroporation of adherent cells.
    García-Sánchez T; Sánchez-Ortiz B; Vila I; Guitart M; Rosell J; Gómez-Foix AM; Bragós R
    J Membr Biol; 2012 Oct; 245(10):617-24. PubMed ID: 22825716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High efficiency, site-specific transfection of adherent cells with siRNA using microelectrode arrays (MEA).
    Patel C; Muthuswamy J
    J Vis Exp; 2012 Sep; (67):e4415. PubMed ID: 23007885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A laminar flow electroporation system for efficient DNA and siRNA delivery.
    Wei Z; Zhao D; Li X; Wu M; Wang W; Huang H; Wang X; Du Q; Liang Z; Li Z
    Anal Chem; 2011 Aug; 83(15):5881-7. PubMed ID: 21678996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.