These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24682727)

  • 1. Blood flow distribution in an anatomically detailed arterial network model: criteria and algorithms.
    Blanco PJ; Watanabe SM; Dari EA; Passos MA; Feijóo RA
    Biomech Model Mechanobiol; 2014 Nov; 13(6):1303-30. PubMed ID: 24682727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An anatomically detailed arterial network model for one-dimensional computational hemodynamics.
    Blanco PJ; Watanabe SM; Passos MA; Lemos PA; Feijóo RA
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):736-53. PubMed ID: 25347874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of vascular territory resistances in one-dimensional hemodynamics simulations.
    Blanco PJ; Watanabe SM; Feijóo RA
    J Biomech; 2012 Aug; 45(12):2066-73. PubMed ID: 22771032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Outflow boundary conditions for blood flow in arterial trees.
    Du T; Hu D; Cai D
    PLoS One; 2015; 10(5):e0128597. PubMed ID: 26000782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical modeling of arterial blood flow and correlation to atherosclerosis.
    Perktold K; Rappitsch G
    Technol Health Care; 1995 Dec; 3(3):139-51. PubMed ID: 8749862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the anatomical definition of arterial networks in blood flow simulations: comparison of detailed and simplified models.
    Blanco PJ; Müller LO; Watanabe SM; Feijóo RA
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1663-1678. PubMed ID: 32034549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of a patient-specific one-dimensional model of the systemic arterial tree.
    Reymond P; Bohraus Y; Perren F; Lazeyras F; Stergiopulos N
    Am J Physiol Heart Circ Physiol; 2011 Sep; 301(3):H1173-82. PubMed ID: 21622820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Verification and comparison of four numerical schemes for a 1D viscoelastic blood flow model.
    Wang X; Fullana JM; Lagrée PY
    Comput Methods Biomech Biomed Engin; 2015; 18(15):1704-25. PubMed ID: 25145651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of 1D blood flow models of the human arterial network to differential pressure predictions.
    Johnson DA; Rose WC; Edwards JW; Naik UP; Beris AN
    J Biomech; 2011 Mar; 44(5):869-76. PubMed ID: 21236432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulations against in vitro measurements.
    Matthys KS; Alastruey J; Peiró J; Khir AW; Segers P; Verdonck PR; Parker KH; Sherwin SJ
    J Biomech; 2007; 40(15):3476-86. PubMed ID: 17640653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Simulation of Blood Flows in Patient-specific Abdominal Aorta with Primary Organs.
    Qin S; Chen R; Wu B; Shiu WS; Cai XC
    Biomech Model Mechanobiol; 2021 Jun; 20(3):909-924. PubMed ID: 33582934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The numerical analysis of fluid-solid interactions for blood flow in arterial structures. Part 2: Development of coupled fluid-solid algorithms.
    Zhao SZ; Xu XY; Collins MW
    Proc Inst Mech Eng H; 1998; 212(4):241-52. PubMed ID: 9769692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics, and experimental validation.
    Canić S; Hartley CJ; Rosenstrauch D; Tambaca J; Guidoboni G; Mikelić A
    Ann Biomed Eng; 2006 Apr; 34(4):575-92. PubMed ID: 16550449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wave propagation in a model of the arterial circulation.
    Wang JJ; Parker KH
    J Biomech; 2004 Apr; 37(4):457-70. PubMed ID: 14996557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing the number of parameters in 1D arterial blood flow modeling: less is more for patient-specific simulations.
    Epstein S; Willemet M; Chowienczyk PJ; Alastruey J
    Am J Physiol Heart Circ Physiol; 2015 Jul; 309(1):H222-34. PubMed ID: 25888513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the three-element windkessel model incorporating a pressure-dependent compliance.
    Cappello A; Gnudi G; Lamberti C
    Ann Biomed Eng; 1995; 23(2):164-77. PubMed ID: 7605053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporating autoregulatory mechanisms of the cardiovascular system in three-dimensional finite element models of arterial blood flow.
    Kim HJ; Jansen KE; Taylor CA
    Ann Biomed Eng; 2010 Jul; 38(7):2314-30. PubMed ID: 20352333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart.
    Formaggia L; Lamponi D; Tuveri M; Veneziani A
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):273-88. PubMed ID: 17132614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of reduced-order unscented Kalman filter for parameter identification in 1-dimensional blood flow models using experimental data.
    Caiazzo A; Caforio F; Montecinos G; Muller LO; Blanco PJ; Toro EF
    Int J Numer Method Biomed Eng; 2017 Aug; 33(8):e2843. PubMed ID: 27781397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.