BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 24682922)

  • 1. Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat.
    Gupta OP; Meena NL; Sharma I; Sharma P
    Mol Biol Rep; 2014 Jul; 41(7):4623-9. PubMed ID: 24682922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNAs involving in cold, wounding and salt stresses in Triticum aestivum L.
    Wang B; Sun YF; Song N; Wei JP; Wang XJ; Feng H; Yin ZY; Kang ZS
    Plant Physiol Biochem; 2014 Jul; 80():90-6. PubMed ID: 24735552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endoplasmic reticulum stress-responsive microRNAs are involved in the regulation of abiotic stresses in wheat.
    Chen Y; Yu X
    Plant Cell Rep; 2023 Sep; 42(9):1433-1452. PubMed ID: 37341828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal expression analysis of microRNAs and their target GRAS genes induced by osmotic stress in two contrasting wheat genotypes.
    Mishra S; Chaudhary R; Sharma P
    Mol Biol Rep; 2023 Jul; 50(7):5621-5633. PubMed ID: 37179268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Temporal Expression Analysis of MicroRNAs and Their Target Genes in Contrasting Wheat Genotypes During Osmotic Stress.
    Kaur A; Gupta OP; Meena NL; Grewal A; Sharma P
    Appl Biochem Biotechnol; 2017 Feb; 181(2):613-626. PubMed ID: 27663608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Profiling of mitochondrial transcriptome in germinating wheat embryos and seedlings subjected to cold, salinity and osmotic stresses.
    Naydenov NG; Khanam S; Siniauskaya M; Nakamura C
    Genes Genet Syst; 2010 Feb; 85(1):31-42. PubMed ID: 20410663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A MYB gene from wheat (Triticum aestivum L.) is up-regulated during salt and drought stresses and differentially regulated between salt-tolerant and sensitive genotypes.
    Rahaie M; Xue GP; Naghavi MR; Alizadeh H; Schenk PM
    Plant Cell Rep; 2010 Aug; 29(8):835-44. PubMed ID: 20490502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat.
    Muthusamy SK; Dalal M; Chinnusamy V; Bansal KC
    J Plant Physiol; 2017 Apr; 211():100-113. PubMed ID: 28178571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a MYB3R gene involved in drought, salt and cold stress in wheat (Triticum aestivum L.).
    Cai H; Tian S; Liu C; Dong H
    Gene; 2011 Oct; 485(2):146-52. PubMed ID: 21763408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of γ-aminobutyric acid metabolism and oxidative damage in wheat (Triticum aestivum L.) seedlings under salt and osmotic stress.
    Al-Quraan NA; Sartawe FA; Qaryouti MM
    J Plant Physiol; 2013 Jul; 170(11):1003-9. PubMed ID: 23602379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco.
    Wang C; Deng P; Chen L; Wang X; Ma H; Hu W; Yao N; Feng Y; Chai R; Yang G; He G
    PLoS One; 2013; 8(6):e65120. PubMed ID: 23762295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA expression patterns unveil differential expression of conserved miRNAs and target genes against abiotic stress in safflower.
    Kouhi F; Sorkheh K; Ercisli S
    PLoS One; 2020; 15(2):e0228850. PubMed ID: 32069300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat.
    Rong W; Qi L; Wang A; Ye X; Du L; Liang H; Xin Z; Zhang Z
    Plant Biotechnol J; 2014 May; 12(4):468-79. PubMed ID: 24393105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing.
    Tang Z; Zhang L; Xu C; Yuan S; Zhang F; Zheng Y; Zhao C
    Plant Physiol; 2012 Jun; 159(2):721-38. PubMed ID: 22508932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and molecular characterization of a novel WIN1/SHN1 ethylene-responsive transcription factor TdSHN1 from durum wheat (Triticum turgidum. L. subsp. durum).
    Djemal R; Khoudi H
    Protoplasma; 2015 Nov; 252(6):1461-73. PubMed ID: 25687296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverse expression pattern of wheat transcription factors against abiotic stresses in wheat species.
    Baloglu MC; Inal B; Kavas M; Unver T
    Gene; 2014 Oct; 550(1):117-22. PubMed ID: 25130909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of TaDi19A, a salt-responsive gene in wheat.
    Li S; Xu C; Yang Y; Xia G
    Plant Cell Environ; 2010 Jan; 33(1):117-29. PubMed ID: 19895399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the TaAIDFa gene encoding a CRT/DRE-binding factor responsive to drought, high-salt, and cold stress in wheat.
    Xu ZS; Ni ZY; Liu L; Nie LN; Li LC; Chen M; Ma YZ
    Mol Genet Genomics; 2008 Dec; 280(6):497-508. PubMed ID: 18800227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis.
    Mao X; Zhang H; Tian S; Chang X; Jing R
    J Exp Bot; 2010 Mar; 61(3):683-96. PubMed ID: 20022921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TaPUB1, a Putative E3 Ligase Gene from Wheat, Enhances Salt Stress Tolerance in Transgenic Nicotiana benthamiana.
    Zhang M; Zhang GQ; Kang HH; Zhou SM; Wang W
    Plant Cell Physiol; 2017 Oct; 58(10):1673-1688. PubMed ID: 29016965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.