These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24683318)

  • 1. A simple SQP algorithm for constrained finite minimax problems.
    Wang L; Luo Z
    ScientificWorldJournal; 2014; 2014():159754. PubMed ID: 24683318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Projection Neural Network for Constrained Quadratic Minimax Optimization.
    Liu Q; Wang J
    IEEE Trans Neural Netw Learn Syst; 2015 Nov; 26(11):2891-900. PubMed ID: 25966485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a particle swarm algorithm for biomechanical optimization.
    Schutte JF; Koh BI; Reinbolt JA; Haftka RT; George AD; Fregly BJ
    J Biomech Eng; 2005 Jun; 127(3):465-74. PubMed ID: 16060353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An accelerated proximal gradient algorithm for singly linearly constrained quadratic programs with box constraints.
    Han C; Li M; Zhao T; Guo T
    ScientificWorldJournal; 2013; 2013():246596. PubMed ID: 24223028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application.
    Li S; Li Y; Wang Z
    Neural Netw; 2013 Mar; 39():27-39. PubMed ID: 23334164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid cuckoo search algorithm with Nelder Mead method for solving global optimization problems.
    Ali AF; Tawhid MA
    Springerplus; 2016; 5():473. PubMed ID: 27217988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new recurrent neural network for solving convex quadratic programming problems with an application to the k-winners-take-all problem.
    Hu X; Zhang B
    IEEE Trans Neural Netw; 2009 Apr; 20(4):654-64. PubMed ID: 19228555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-element neural networks for solving differential equations.
    Ramuhalli P; Udpa L; Udpa SS
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1381-92. PubMed ID: 16342482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nonfeasible gradient projection recurrent neural network for equality-constrained optimization problems.
    Barbarosou MP; Maratos NG
    IEEE Trans Neural Netw; 2008 Oct; 19(10):1665-77. PubMed ID: 18842472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An organizational evolutionary algorithm for numerical optimization.
    Liu J; Zhong W; Jiao L
    IEEE Trans Syst Man Cybern B Cybern; 2007 Aug; 37(4):1052-64. PubMed ID: 17702302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Memetic computing through bio-inspired heuristics integration with sequential quadratic programming for nonlinear systems arising in different physical models.
    Raja MA; Kiani AK; Shehzad A; Zameer A
    Springerplus; 2016; 5(1):2063. PubMed ID: 27995040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved dual neural network for solving a class of quadratic programming problems and its k-winners-take-all application.
    Hu X; Wang J
    IEEE Trans Neural Netw; 2008 Dec; 19(12):2022-31. PubMed ID: 19054727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of Spectral Gradient Algorithm for Solving Matrix ℓ2,1-Norm Minimization Problems in Machine Learning.
    Xiao Y; Wang Q; Liu L
    PLoS One; 2016; 11(11):e0166169. PubMed ID: 27861526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Barrier Varying-Parameter Dynamic Learning Network for Solving Time-Varying Quadratic Programming Problems With Multiple Constraints.
    Zhang Z; Li Z; Yang S
    IEEE Trans Cybern; 2022 Sep; 52(9):8781-8792. PubMed ID: 33635808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural network for solving convex quadratic bilevel programming problems.
    He X; Li C; Huang T; Li C
    Neural Netw; 2014 Mar; 51():17-25. PubMed ID: 24333480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Levenberg-Marquardt method for the eigenvalue complementarity problem.
    Chen YY; Gao Y
    ScientificWorldJournal; 2014; 2014():307823. PubMed ID: 25530996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithm.
    Zhang H; Wei Q; Luo Y
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):937-42. PubMed ID: 18632381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A delayed neural network for solving linear projection equations and its analysis.
    Liu Q; Cao J; Xia Y
    IEEE Trans Neural Netw; 2005 Jul; 16(4):834-43. PubMed ID: 16121725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A robust information clustering algorithm.
    Song Q
    Neural Comput; 2005 Dec; 17(12):2672-98. PubMed ID: 16212767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced differential evolution with adaptive strategies for numerical optimization.
    Gong W; Cai Z; Ling CX; Li H
    IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):397-413. PubMed ID: 20837448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.