These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 24684271)
1. Mussel inspired modification of polypropylene separators by catechol/polyamine for Li-ion batteries. Wang H; Wu J; Cai C; Guo J; Fan H; Zhu C; Dong H; Zhao N; Xu J ACS Appl Mater Interfaces; 2014 Apr; 6(8):5602-8. PubMed ID: 24684271 [TBL] [Abstract][Full Text] [Related]
2. Low-cost mussel inspired poly(Catechol/Polyamine) modified magnetic nanoparticles as a versatile platform for enhanced activity of immobilized enzyme. Tang W; Chen C; Sun W; Wang P; Wei D Int J Biol Macromol; 2019 May; 128():814-824. PubMed ID: 30708009 [TBL] [Abstract][Full Text] [Related]
3. Role of Hydrophilic APTES-PP Separator in Enhancing the Electrochemical Performance of Ni-Rich Cathode for Li-Ion Battery. Shin MR; Son JT J Nanosci Nanotechnol; 2019 Mar; 19(3):1330-1334. PubMed ID: 30469183 [TBL] [Abstract][Full Text] [Related]
4. Recent Development of Polyolefin-Based Microporous Separators for Li-Ion Batteries: A Review. Heidari AA; Mahdavi H Chem Rec; 2020 Jun; 20(6):570-595. PubMed ID: 31833648 [TBL] [Abstract][Full Text] [Related]
5. Rational Integration of Polypropylene/Graphene Oxide/Nafion as Ternary-Layered Separator to Retard the Shuttle of Polysulfides for Lithium-Sulfur Batteries. Zhuang TZ; Huang JQ; Peng HJ; He LY; Cheng XB; Chen CM; Zhang Q Small; 2016 Jan; 12(3):381-9. PubMed ID: 26641415 [TBL] [Abstract][Full Text] [Related]
6. Self-Polymerized Dopamine Nanoparticles Modified Separators for Improving Electrochemical Performance and Enhancing Mechanical Strength of Lithium-Ion Batteries. Hao W; Kong D; Xie J; Chen Y; Ding J; Wang F; Xu T Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32178318 [TBL] [Abstract][Full Text] [Related]
7. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Ryou MH; Kim J; Lee I; Kim S; Jeong YK; Hong S; Ryu JH; Kim TS; Park JK; Lee H; Choi JW Adv Mater; 2013 Mar; 25(11):1571-6. PubMed ID: 23280515 [TBL] [Abstract][Full Text] [Related]
8. Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. Zhang J; Liu Z; Kong Q; Zhang C; Pang S; Yue L; Wang X; Yao J; Cui G ACS Appl Mater Interfaces; 2013 Jan; 5(1):128-34. PubMed ID: 23227828 [TBL] [Abstract][Full Text] [Related]
9. Mussel-inspired polydopamine-treated polyethylene separators for high-power li-ion batteries. Ryou MH; Lee YM; Park JK; Choi JW Adv Mater; 2011 Jul; 23(27):3066-70. PubMed ID: 21608049 [No Abstract] [Full Text] [Related]
10. Self-assembly of PEI/SiO2 on polyethylene separators for Li-ion batteries with enhanced rate capability. Wang Z; Guo F; Chen C; Shi L; Yuan S; Sun L; Zhu J ACS Appl Mater Interfaces; 2015 Feb; 7(5):3314-22. PubMed ID: 25602261 [TBL] [Abstract][Full Text] [Related]
11. Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries. Hofmann A; Kaufmann C; Müller M; Hanemann T Int J Mol Sci; 2015 Aug; 16(9):20258-76. PubMed ID: 26343636 [TBL] [Abstract][Full Text] [Related]
12. Poly(ethylene oxide)-co-poly(propylene oxide)-based gel electrolyte with high ionic conductivity and mechanical integrity for lithium-ion batteries. Wang SH; Hou SS; Kuo PL; Teng H ACS Appl Mater Interfaces; 2013 Sep; 5(17):8477-85. PubMed ID: 23931907 [TBL] [Abstract][Full Text] [Related]
13. Ethylcellulose-coated polyolefin separators for lithium-ion batteries with improved safety performance. Xiong M; Tang H; Wang Y; Pan M Carbohydr Polym; 2014 Jan; 101():1140-6. PubMed ID: 24299885 [TBL] [Abstract][Full Text] [Related]
14. Advanced Separators for Lithium-Ion and Lithium-Sulfur Batteries: A Review of Recent Progress. Xiang Y; Li J; Lei J; Liu D; Xie Z; Qu D; Li K; Deng T; Tang H ChemSusChem; 2016 Nov; 9(21):3023-3039. PubMed ID: 27667306 [TBL] [Abstract][Full Text] [Related]
15. Preparation of novel carbon microfiber/carbon nanofiber-dispersed polyvinyl alcohol-based nanocomposite material for lithium-ion electrolyte battery separator. Sharma AK; Khare P; Singh JK; Verma N Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1702-9. PubMed ID: 23827627 [TBL] [Abstract][Full Text] [Related]
16. Decoration of Silica Nanoparticles on Polypropylene Separator for Lithium-Sulfur Batteries. Li J; Huang Y; Zhang S; Jia W; Wang X; Guo Y; Jia D; Wang L ACS Appl Mater Interfaces; 2017 Mar; 9(8):7499-7504. PubMed ID: 28186728 [TBL] [Abstract][Full Text] [Related]
17. A bacterial cellulose-based separator with tunable pore size for lithium-ion batteries. Cheng C; Yang R; Wang Y; Fu D; Sheng J; Guo X Carbohydr Polym; 2023 Mar; 304():120489. PubMed ID: 36641193 [TBL] [Abstract][Full Text] [Related]
18. Effective Dual Polysulfide Rejection by a Tannic Acid/Fe Zhang H; Lin C; Hu X; Zhu B; Yu D ACS Appl Mater Interfaces; 2018 Apr; 10(15):12708-12715. PubMed ID: 29582992 [TBL] [Abstract][Full Text] [Related]
19. Mussel-Inspired Coating and Adhesion for Rechargeable Batteries: A Review. Jeong YK; Park SH; Choi JW ACS Appl Mater Interfaces; 2018 Mar; 10(9):7562-7573. PubMed ID: 28937738 [TBL] [Abstract][Full Text] [Related]
20. Porous cellulose diacetate-SiO2 composite coating on polyethylene separator for high-performance lithium-ion battery. Chen W; Shi L; Wang Z; Zhu J; Yang H; Mao X; Chi M; Sun L; Yuan S Carbohydr Polym; 2016 Aug; 147():517-524. PubMed ID: 27178959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]