BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24684381)

  • 1. Cysteine oxidation reactions catalyzed by a mononuclear non-heme iron enzyme (OvoA) in ovothiol biosynthesis.
    Song H; Her AS; Raso F; Zhen Z; Huo Y; Liu P
    Org Lett; 2014 Apr; 16(8):2122-5. PubMed ID: 24684381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regioselectivity of the oxidative C-S bond formation in ergothioneine and ovothiol biosyntheses.
    Song H; Leninger M; Lee N; Liu P
    Org Lett; 2013 Sep; 15(18):4854-7. PubMed ID: 24016264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a Tyrosine Analogue To Modulate the Two Activities of a Nonheme Iron Enzyme OvoA in Ovothiol Biosynthesis, Cysteine Oxidation versus Oxidative C-S Bond Formation.
    Chen L; Naowarojna N; Song H; Wang S; Wang J; Deng Z; Zhao C; Liu P
    J Am Chem Soc; 2018 Apr; 140(13):4604-4612. PubMed ID: 29544051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vitro Reconstitution of the Remaining Steps in Ovothiol A Biosynthesis: C-S Lyase and Methyltransferase Reactions.
    Naowarojna N; Huang P; Cai Y; Song H; Wu L; Cheng R; Li Y; Wang S; Lyu H; Zhang L; Zhou J; Liu P
    Org Lett; 2018 Sep; 20(17):5427-5430. PubMed ID: 30141637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First evidence of ovothiol biosynthesis in marine diatoms.
    Milito A; Castellano I; Burn R; Seebeck FP; Brunet C; Palumbo A
    Free Radic Biol Med; 2020 May; 152():680-688. PubMed ID: 31935446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical and Structural Characterization of OvoA
    Wang X; Hu S; Wang J; Zhang T; Ye K; Wen A; Zhu G; Vegas A; Zhang L; Yan W; Liu X; Liu P
    ACS Catal; 2023 Dec; 13(23):15417-15426. PubMed ID: 38058600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An S=1 Iron(IV) Intermediate Revealed in a Non-Heme Iron Enzyme-Catalyzed Oxidative C-S Bond Formation.
    Paris JC; Hu S; Wen A; Weitz AC; Cheng R; Gee LB; Tang Y; Kim H; Vegas A; Chang WC; Elliott SJ; Liu P; Guo Y
    Angew Chem Int Ed Engl; 2023 Oct; 62(43):e202309362. PubMed ID: 37640689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of ergothioneine from endogenous hercynine in Mycobacterium smegmatis.
    Genghof DS; Van Damme O
    J Bacteriol; 1968 Feb; 95(2):340-4. PubMed ID: 5644441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the biosynthesis of ovothiol A. Identification of 4-mercaptohistidine as an intermediate.
    Steenkamp DJ; Weldrick D; Spies HS
    Eur J Biochem; 1996 Dec; 242(3):557-66. PubMed ID: 9022682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate specificity of an oxygen dependent sulfoxide synthase in ovothiol biosynthesis.
    Mashabela GT; Seebeck FP
    Chem Commun (Camb); 2013 Sep; 49(70):7714-6. PubMed ID: 23877651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mini-Review: Ergothioneine and Ovothiol Biosyntheses, an Unprecedented Trans-Sulfur Strategy in Natural Product Biosynthesis.
    Naowarojna N; Cheng R; Chen L; Quill M; Xu M; Zhao C; Liu P
    Biochemistry; 2018 Jun; 57(24):3309-3325. PubMed ID: 29589901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady-state substrate specificity and O₂-coupling efficiency of mouse cysteine dioxygenase.
    Li W; Pierce BS
    Arch Biochem Biophys; 2015 Jan; 565():49-56. PubMed ID: 25444857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme-Catalyzed Oxidative Degradation of Ergothioneine.
    Nalivaiko EY; Vasseur CM; Seebeck FP
    Angew Chem Int Ed Engl; 2024 Feb; 63(8):e202318445. PubMed ID: 38095354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural insights into the histidine trimethylation activity of EgtD from Mycobacterium smegmatis.
    Jeong JH; Cha HJ; Ha SC; Rojviriya C; Kim YG
    Biochem Biophys Res Commun; 2014 Oct; 452(4):1098-103. PubMed ID: 25251321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the nitrosyl adduct of substrate-bound mouse cysteine dioxygenase by electron paramagnetic resonance: electronic structure of the active site and mechanistic implications.
    Pierce BS; Gardner JD; Bailey LJ; Brunold TC; Fox BG
    Biochemistry; 2007 Jul; 46(29):8569-78. PubMed ID: 17602574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pH-Induced Selectivity Between Cysteine or Histidine Coordinated Heme in an Artificial α-Helical Metalloprotein.
    Koebke KJ; Kühl T; Lojou E; Demeler B; Schoepp-Cothenet B; Iranzo O; Pecoraro VL; Ivancich A
    Angew Chem Int Ed Engl; 2021 Feb; 60(8):3974-3978. PubMed ID: 33215801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replacement of the proximal histidine iron ligand by a cysteine or tyrosine converts heme oxygenase to an oxidase.
    Liu Y; Moënne-Loccoz P; Hildebrand DP; Wilks A; Loehr TM; Mauk AG; Ortiz de Montellano PR
    Biochemistry; 1999 Mar; 38(12):3733-43. PubMed ID: 10090762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cysteine dioxygenase structures from pH4 to 9: consistent cys-persulfenate formation at intermediate pH and a Cys-bound enzyme at higher pH.
    Driggers CM; Cooley RB; Sankaran B; Hirschberger LL; Stipanuk MH; Karplus PA
    J Mol Biol; 2013 Sep; 425(17):3121-36. PubMed ID: 23747973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Second-sphere interactions between the C93-Y157 cross-link and the substrate-bound Fe site influence the O₂ coupling efficiency in mouse cysteine dioxygenase.
    Li W; Blaesi EJ; Pecore MD; Crowell JK; Pierce BS
    Biochemistry; 2013 Dec; 52(51):9104-19. PubMed ID: 24279989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shedding light on ovothiol biosynthesis in marine metazoans.
    Castellano I; Migliaccio O; D'Aniello S; Merlino A; Napolitano A; Palumbo A
    Sci Rep; 2016 Feb; 6():21506. PubMed ID: 26916575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.