These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2468450)

  • 1. Age-dependent effect of UV light in abnormal alpha neoprotein formation in the lens.
    Hibino K; Du J; Dillon J; Malinowski K
    Curr Eye Res; 1988 Nov; 7(11):1113-24. PubMed ID: 2468450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alpha neoprotein molecules in normal lenses from animals of different ages and in cataractous lenses.
    Manski W; Malinowski K
    Exp Eye Res; 1985 Feb; 40(2):179-90. PubMed ID: 3884353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between the constituent A and B lens alpha-crystallin subunits leading to formation of alpha-neoprotein molecules.
    Manski W; Malinowski K
    Arch Biochem Biophys; 1983 Oct; 226(2):531-8. PubMed ID: 6195968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lens alpha-neoproteins.
    Manski W; Malinowski K
    Ophthalmic Res; 1988; 20(3):183-90. PubMed ID: 2460813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the α-crystallin cell membrane conjunction.
    Su SP; McArthur JD; Friedrich MG; Truscott RJ; Aquilina JA
    Mol Vis; 2011; 17():2798-807. PubMed ID: 22219626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of lens proteins. Concentration dependence of beta-crystallin aggregation.
    Siezen RJ; Anello RD; Thomson JA
    Exp Eye Res; 1986 Sep; 43(3):293-303. PubMed ID: 3780875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of UV-A light on the chaperone-like properties of young and old lens alpha-crystallin.
    Weinreb O; van Boekel MA; Dovrat A; Bloemendal H
    Invest Ophthalmol Vis Sci; 2000 Jan; 41(1):191-8. PubMed ID: 10634620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro filament-like formation upon interaction between lens alpha-crystallin and betaL-crystallin promoted by stress.
    Weinreb O; van Rijk AF; Dovrat A; Bloemendal H
    Invest Ophthalmol Vis Sci; 2000 Nov; 41(12):3893-7. PubMed ID: 11053291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of low molecular weight crystallin peptides in the aging human lens using a MALDI mass spectrometry imaging approach.
    Su SP; McArthur JD; Andrew Aquilina J
    Exp Eye Res; 2010 Jul; 91(1):97-103. PubMed ID: 20433829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UV-A-related alterations of young and adult lens water-insoluble alpha-crystallin, plasma membranous and cytoskeletal proteins.
    Weinreb O; Dovrat A; Dunia I; Benedetti EL; Bloemendal H
    Eur J Biochem; 2001 Feb; 268(3):536-43. PubMed ID: 11168392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimization of photooxidative insult to calf lens protein irradiated with near UV-light in the presence of pigmented glucosides derived from human lens protein.
    Inoue A; Sasaki D; Satoh K
    Exp Eye Res; 2004 Dec; 79(6):833-7. PubMed ID: 15642320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Class I UV-blocking (senofilcon A) soft contact lens prevents UVA-induced yellow fluorescence and NADH loss in the rabbit lens nucleus in vivo.
    Giblin FJ; Lin LR; Simpanya MF; Leverenz VR; Fick CE
    Exp Eye Res; 2012 Sep; 102():17-27. PubMed ID: 22766154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased sensitivity of amino-arm truncated betaA3-crystallin to UV-light-induced photoaggregation.
    Sergeev YV; Soustov LV; Chelnokov EV; Bityurin NM; Backlund PS; Wingfield PT; Ostrovsky MA; Hejtmancik JF
    Invest Ophthalmol Vis Sci; 2005 Sep; 46(9):3263-73. PubMed ID: 16123428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of ultraviolet induced photo-kinetics for lens-derived and recombinant beta-crystallins.
    Ostrovsky MA; Sergeev YV; Atkinson DB; Soustov LV; Hejtmancik JF
    Mol Vis; 2002 Mar; 8():72-8. PubMed ID: 11951082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resistance of alpha-crystallin quaternary structure to UV irradiation.
    Krivandin AV; Muranov KO; Yakovlev FY; Poliansky NB; Wasserman LA; Ostrovsky MA
    Biochemistry (Mosc); 2009 Jun; 74(6):633-42. PubMed ID: 19645668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale binding of α-crystallin to cell membranes of aged normal human lenses: a phenomenon that can be induced by mild thermal stress.
    Friedrich MG; Truscott RJ
    Invest Ophthalmol Vis Sci; 2010 Oct; 51(10):5145-52. PubMed ID: 20435594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ability of lens alpha crystallin to protect against heat-induced aggregation is age-dependent.
    Horwitz J; Emmons T; Takemoto L
    Curr Eye Res; 1992 Aug; 11(8):817-22. PubMed ID: 1424725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isoelectric focusing of crystallins in microsections of calf and adult bovine lens. Identification of water-insoluble crystallins complexing under nondenaturing conditions: demonstration of chaperone activity of alpha-crystallin.
    Babizhayev MA; Bours J; Utikal KJ
    Ophthalmic Res; 1996; 28(6):365-74. PubMed ID: 9032796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the antigenic relationship between the alpha A and alpha B subunits of alpha-crystallin in bovine lens.
    Butler DM; Augusteyn RC
    Curr Eye Res; 1986 Mar; 5(3):225-9. PubMed ID: 2421980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolutionary sequence and quantities of different antigenic determinants of calf lens alpha crystallin.
    Manski W; Malinowski K
    Immunochemistry; 1978 Nov; 15(10-11):781-6. PubMed ID: 85603
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.