These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Crystal structure of the N-terminal domain of MtClpC1 in complex with the anti-mycobacterial natural peptide Lassomycin. Jagdev MK; Tompa DR; Ling LL; Peoples AJ; Dandapat J; Mohapatra C; Lewis K; Vasudevan D Int J Biol Macromol; 2023 Dec; 253(Pt 2):126771. PubMed ID: 37683752 [TBL] [Abstract][Full Text] [Related]
4. Rufomycin Targets ClpC1 Proteolysis in Mycobacterium tuberculosis and M. abscessus. Choules MP; Wolf NM; Lee H; Anderson JR; Grzelak EM; Wang Y; Ma R; Gao W; McAlpine JB; Jin YY; Cheng J; Lee H; Suh JW; Duc NM; Paik S; Choe JH; Jo EK; Chang CL; Lee JS; Jaki BU; Pauli GF; Franzblau SG; Cho S Antimicrob Agents Chemother; 2019 Mar; 63(3):. PubMed ID: 30602512 [TBL] [Abstract][Full Text] [Related]
5. Lassomycin and lariatin lasso peptides as suitable antibiotics for combating mycobacterial infections: current state of biosynthesis and perspectives for production. Zhu S; Su Y; Shams S; Feng Y; Tong Y; Zheng G Appl Microbiol Biotechnol; 2019 May; 103(10):3931-3940. PubMed ID: 30915503 [TBL] [Abstract][Full Text] [Related]
6. Discovery of antibacterial cyclic peptides that inhibit the ClpXP protease. Cheng L; Naumann TA; Horswill AR; Hong SJ; Venters BJ; Tomsho JW; Benkovic SJ; Keiler KC Protein Sci; 2007 Aug; 16(8):1535-42. PubMed ID: 17600141 [TBL] [Abstract][Full Text] [Related]
7. The cyclic peptide ecumicin targeting ClpC1 is active against Mycobacterium tuberculosis in vivo. Gao W; Kim JY; Anderson JR; Akopian T; Hong S; Jin YY; Kandror O; Kim JW; Lee IA; Lee SY; McAlpine JB; Mulugeta S; Sunoqrot S; Wang Y; Yang SH; Yoon TM; Goldberg AL; Pauli GF; Suh JW; Franzblau SG; Cho S Antimicrob Agents Chemother; 2015 Feb; 59(2):880-9. PubMed ID: 25421483 [TBL] [Abstract][Full Text] [Related]
8. Novel Antimicrobials from Uncultured Bacteria Acting against Mycobacterium tuberculosis. Quigley J; Peoples A; Sarybaeva A; Hughes D; Ghiglieri M; Achorn C; Desrosiers A; Felix C; Liang L; Malveira S; Millett W; Nitti A; Tran B; Zullo A; Anklin C; Spoering A; Ling LL; Lewis K mBio; 2020 Aug; 11(4):. PubMed ID: 32753498 [No Abstract] [Full Text] [Related]
9. Anti-tuberculosis lead molecules from natural products targeting Mycobacterium tuberculosis ClpC1. Lee H; Suh JW J Ind Microbiol Biotechnol; 2016 Mar; 43(2-3):205-12. PubMed ID: 26586403 [TBL] [Abstract][Full Text] [Related]
10. Total chemical synthesis of lassomycin and lassomycin-amide. Lear S; Munshi T; Hudson AS; Hatton C; Clardy J; Mosely JA; Bull TJ; Sit CS; Cobb SL Org Biomol Chem; 2016 May; 14(19):4534-41. PubMed ID: 27101411 [TBL] [Abstract][Full Text] [Related]
11. The antibiotic cyclomarin blocks arginine-phosphate-induced millisecond dynamics in the N-terminal domain of ClpC1 from Weinhäupl K; Brennich M; Kazmaier U; Lelievre J; Ballell L; Goldberg A; Schanda P; Fraga H J Biol Chem; 2018 Jun; 293(22):8379-8393. PubMed ID: 29632076 [No Abstract] [Full Text] [Related]
12. Antibacterial peptide CyclomarinA creates toxicity by deregulating the Mycobacterium tuberculosis ClpC1-ClpP1P2 protease. Taylor G; Frommherz Y; Katikaridis P; Layer D; Sinning I; Carroni M; Weber-Ban E; Mogk A J Biol Chem; 2022 Aug; 298(8):102202. PubMed ID: 35768046 [TBL] [Abstract][Full Text] [Related]
13. Total Synthesis and Biological Evaluation of Modified Ilamycin Derivatives. Greve J; Mogk A; Kazmaier U Mar Drugs; 2022 Oct; 20(10):. PubMed ID: 36286456 [TBL] [Abstract][Full Text] [Related]
14. Identification of Arginine Phosphorylation in Mycolicibacterium smegmatis. Ogbonna EC; Anderson HR; Schmitz KR Microbiol Spectr; 2022 Oct; 10(5):e0204222. PubMed ID: 36214676 [TBL] [Abstract][Full Text] [Related]
15. Mutation analysis of the interactions between Mycobacterium tuberculosis caseinolytic protease C1 (ClpC1) and ecumicin. Jung IP; Ha NR; Kim AR; Kim SH; Yoon MY Int J Biol Macromol; 2017 Aug; 101():348-357. PubMed ID: 28342755 [TBL] [Abstract][Full Text] [Related]
16. Macrocyclic Peptides that Selectively Inhibit the Zhang H; Hsu HC; Kahne SC; Hara R; Zhan W; Jiang X; Burns-Huang K; Ouellette T; Imaeda T; Okamoto R; Kawasaki M; Michino M; Wong TT; Toita A; Yukawa T; Moraca F; Vendome J; Saha P; Sato K; Aso K; Ginn J; Meinke PT; Foley M; Nathan CF; Darwin KH; Li H; Lin G J Med Chem; 2021 May; 64(9):6262-6272. PubMed ID: 33949190 [TBL] [Abstract][Full Text] [Related]
17. Effect of antimicrobial peptides on ATPase activity and proton pumping in plasma membrane vesicles obtained from mycobacteria. Santos P; Gordillo A; Osses L; Salazar LM; Soto CY Peptides; 2012 Jul; 36(1):121-8. PubMed ID: 22569076 [TBL] [Abstract][Full Text] [Related]
18. Interactome Analysis Identifies MSMEI_3879 as a Substrate of Mycolicibacterium smegmatis ClpC1. Ogbonna EC; Anderson HR; Beardslee PC; Bheemreddy P; Schmitz KR Microbiol Spectr; 2023 Aug; 11(4):e0454822. PubMed ID: 37341639 [TBL] [Abstract][Full Text] [Related]
19. Structure of the drug target ClpC1 unfoldase in action provides insights on antibiotic mechanism of action. Weinhäupl K; Gragera M; Bueno-Carrasco MT; Arranz R; Krandor O; Akopian T; Soares R; Rubin E; Felix J; Fraga H J Biol Chem; 2022 Nov; 298(11):102553. PubMed ID: 36208775 [TBL] [Abstract][Full Text] [Related]
20. Acyldepsipeptide Antibiotics and a Bioactive Fragment Thereof Differentially Perturb Schmitz KR; Handy EL; Compton CL; Gupta S; Bishai WR; Sauer RT; Sello JK ACS Chem Biol; 2023 Apr; 18(4):724-733. PubMed ID: 32083462 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]