BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 24685233)

  • 1. DAFS: a data-adaptive flag method for RNA-sequencing data to differentiate genes with low and high expression.
    George NI; Chang CW
    BMC Bioinformatics; 2014 Mar; 15():92. PubMed ID: 24685233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using RNentropy to Detect Significant Variation in Gene Expression Across Multiple RNA-Seq or Single-Cell RNA-Seq Samples.
    Zambelli F; Pavesi G
    Methods Mol Biol; 2021; 2284():77-96. PubMed ID: 33835439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential expression analysis of RNA sequencing data by incorporating non-exonic mapped reads.
    Chen HI; Liu Y; Zou Y; Lai Z; Sarkar D; Huang Y; Chen Y
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S14. PubMed ID: 26099631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking differential expression analysis tools for RNA-Seq: normalization-based vs. log-ratio transformation-based methods.
    Quinn TP; Crowley TM; Richardson MF
    BMC Bioinformatics; 2018 Jul; 19(1):274. PubMed ID: 30021534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate estimation of expression levels of homologous genes in RNA-seq experiments.
    Paşaniuc B; Zaitlen N; Halperin E
    J Comput Biol; 2011 Mar; 18(3):459-68. PubMed ID: 21385047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl(-/-) retinal transcriptomes.
    Brooks MJ; Rajasimha HK; Roger JE; Swaroop A
    Mol Vis; 2011; 17():3034-54. PubMed ID: 22162623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mixture model for expression deconvolution from RNA-seq in heterogeneous tissues.
    Li Y; Xie X
    BMC Bioinformatics; 2013; 14 Suppl 5(Suppl 5):S11. PubMed ID: 23735186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative evaluation of gene set analysis approaches for RNA-Seq data.
    Rahmatallah Y; Emmert-Streib F; Glazko G
    BMC Bioinformatics; 2014 Dec; 15(1):397. PubMed ID: 25475910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classifying next-generation sequencing data using a zero-inflated Poisson model.
    Zhou Y; Wan X; Zhang B; Tong T
    Bioinformatics; 2018 Apr; 34(8):1329-1335. PubMed ID: 29186294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Silico HLA Typing Using Standard RNA-Seq Sequence Reads.
    Boegel S; Scholtalbers J; Löwer M; Sahin U; Castle JC
    Methods Mol Biol; 2015; 1310():247-58. PubMed ID: 26024640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QuickRNASeq lifts large-scale RNA-seq data analyses to the next level of automation and interactive visualization.
    Zhao S; Xi L; Quan J; Xi H; Zhang Y; von Schack D; Vincent M; Zhang B
    BMC Genomics; 2016 Jan; 17():39. PubMed ID: 26747388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of high variability in gene expression from single-cell RNA-seq profiling.
    Chen HI; Jin Y; Huang Y; Chen Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyester: simulating RNA-seq datasets with differential transcript expression.
    Frazee AC; Jaffe AE; Langmead B; Leek JT
    Bioinformatics; 2015 Sep; 31(17):2778-84. PubMed ID: 25926345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome assembly and quantification from Ion Torrent RNA-Seq data.
    Mangul S; Caciula A; Al Seesi S; Brinza D; Mӑndoiu I; Zelikovsky A
    BMC Genomics; 2014; 15 Suppl 5(Suppl 5):S7. PubMed ID: 25082147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AtRTD - a comprehensive reference transcript dataset resource for accurate quantification of transcript-specific expression in Arabidopsis thaliana.
    Zhang R; Calixto CP; Tzioutziou NA; James AB; Simpson CG; Guo W; Marquez Y; Kalyna M; Patro R; Eyras E; Barta A; Nimmo HG; Brown JW
    New Phytol; 2015 Oct; 208(1):96-101. PubMed ID: 26111100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covariate-dependent negative binomial factor analysis of RNA sequencing data.
    Zamani Dadaneh S; Zhou M; Qian X
    Bioinformatics; 2018 Jul; 34(13):i61-i69. PubMed ID: 29949981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NPEBseq: nonparametric empirical bayesian-based procedure for differential expression analysis of RNA-seq data.
    Bi Y; Davuluri RV
    BMC Bioinformatics; 2013 Aug; 14():262. PubMed ID: 23981227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diminishing returns in next-generation sequencing (NGS) transcriptome data.
    Lei R; Ye K; Gu Z; Sun X
    Gene; 2015 Feb; 557(1):82-7. PubMed ID: 25497830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Power analysis and sample size estimation for RNA-Seq differential expression.
    Ching T; Huang S; Garmire LX
    RNA; 2014 Nov; 20(11):1684-96. PubMed ID: 25246651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.