BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24685530)

  • 1. Photooxidation of cellulose nitrate: new insights into degradation mechanisms.
    Berthumeyrie S; Collin S; Bussiere PO; Therias S
    J Hazard Mater; 2014 May; 272():137-47. PubMed ID: 24685530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polylactic acid and polylactic acid-based nanocomposite photooxidation.
    Bocchini S; Fukushima K; Blasio AD; Fina A; Frache A; Geobaldo F
    Biomacromolecules; 2010 Nov; 11(11):2919-26. PubMed ID: 20942482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of transparent and ultraviolet shielding composite films based on graphene oxide and cellulose acetate.
    de Moraes AC; Andrade PF; de Faria AF; Simões MB; Salomão FC; Barros EB; Gonçalves Mdo C; Alves OL
    Carbohydr Polym; 2015 Jun; 123():217-27. PubMed ID: 25843853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of the alkaline hydrolysis of nitrocellulose.
    Christodoulatos C; Su TL; Koutsospyros A
    Water Environ Res; 2001; 73(2):185-91. PubMed ID: 11563378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoset phenolic matrices reinforced with unmodified and surface-grafted furfuryl alcohol sugar cane bagasse and curaua fibers: properties of fibers and composites.
    Trindade WG; Hoareau W; Megiatto JD; Razera IA; Castellan A; Frollini E
    Biomacromolecules; 2005; 6(5):2485-96. PubMed ID: 16153084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties.
    Aulin C; Karabulut E; Tran A; Wågberg L; Lindström T
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7352-9. PubMed ID: 23834391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface characterizations of spin-coated films of ethylcellulose and hydroxypropyl methylcellulose blends.
    Lua YY; Cao X; Rohrs BR; Aldrich DS
    Langmuir; 2007 Apr; 23(8):4286-92. PubMed ID: 17346067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Routine hydrogen isotope measurement of cellulose nitrate by high-temperature pyrolysis--reference materials and precision.
    Knöller K; Boettger T; Haupt M; Weise SM
    Rapid Commun Mass Spectrom; 2007; 21(18):3085-92. PubMed ID: 17705346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metastable patterning of plasma nanocomposite films by incorporating cellulose nanowhiskers.
    Samyn P; Laborie MP; Mathew AP; Airoudj A; Haidara H; Roucoules V
    Langmuir; 2012 Jan; 28(2):1427-38. PubMed ID: 22059805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals.
    Podsiadlo P; Choi SY; Shim B; Lee J; Cuddihy M; Kotov NA
    Biomacromolecules; 2005; 6(6):2914-8. PubMed ID: 16283706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic degradation of model cellulose films.
    Eriksson J; Malmsten M; Tiberg F; Callisen TH; Damhus T; Johansen KS
    J Colloid Interface Sci; 2005 Apr; 284(1):99-106. PubMed ID: 15752790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nitrate content on thermal decomposition of nitrocellulose.
    Pourmortazavi SM; Hosseini SG; Rahimi-Nasrabadi M; Hajimirsadeghi SS; Momenian H
    J Hazard Mater; 2009 Mar; 162(2-3):1141-4. PubMed ID: 18650008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent immobilization of cellulose layers onto maleic anhydride copolymer thin films.
    Freudenberg U; Zschoche S; Simon F; Janke A; Schmidt K; Behrens SH; Auweter H; Werner C
    Biomacromolecules; 2005; 6(3):1628-34. PubMed ID: 15877387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Favorable chitosan/cellulose film combinations for copper removal from aqueous solutions.
    Lima IS; Lazarin AM; Airoldi C
    Int J Biol Macromol; 2005 Jul; 36(1-2):79-83. PubMed ID: 15896840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-step UV-induced modification of cellulose fabrics by polypyrrole/silver nanocomposite films.
    Attia MF; Azib T; Salmi Z; Singh A; Decorse P; Battaglini N; Lecoq H; Omastová M; Higazy AA; Elshafei AM; Hashem MM; Chehimi MM
    J Colloid Interface Sci; 2013 Mar; 393():130-7. PubMed ID: 23273672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transparent, Flexible, and Strong 2,3-Dialdehyde Cellulose Films with High Oxygen Barrier Properties.
    Plappert SF; Quraishi S; Pircher N; Mikkonen KS; Veigel S; Klinger KM; Potthast A; Rosenau T; Liebner FW
    Biomacromolecules; 2018 Jul; 19(7):2969-2978. PubMed ID: 29757619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic digestion of partially and fully regenerated cellulose model films from trimethylsilyl cellulose.
    Mohan T; Kargl R; Doliška A; Ehmann HM; Ribitsch V; Stana-Kleinschek K
    Carbohydr Polym; 2013 Mar; 93(1):191-8. PubMed ID: 23465919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the supramolecular structure and physicochemical properties of cellulose on its dissolution in a lithium chloride/N,N-dimethylacetamide solvent system.
    Ramos LA; Assaf JM; El Seoud OA; Frollini E
    Biomacromolecules; 2005; 6(5):2638-47. PubMed ID: 16153102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable cellulose diacetate-graft-poly(L-lactide)s: enzymatic hydrolysis behavior and surface morphological characterization.
    Teramoto Y; Nishio Y
    Biomacromolecules; 2004; 5(2):407-14. PubMed ID: 15003000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoreactive cellulose membrane--A novel matrix for covalent immobilization of biomolecules.
    Bora U; Sharma P; Kannan K; Nahar P
    J Biotechnol; 2006 Nov; 126(2):220-9. PubMed ID: 16716429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.