These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 24685677)

  • 1. Biosynthesis of cystic fibrosis transmembrane conductance regulator.
    Pranke IM; Sermet-Gaudelus I
    Int J Biochem Cell Biol; 2014 Jul; 52():26-38. PubMed ID: 24685677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models.
    Wang Y; Wrennall JA; Cai Z; Li H; Sheppard DN
    Int J Biochem Cell Biol; 2014 Jul; 52():47-57. PubMed ID: 24727426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rescuing cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by transcomplementation.
    Cormet-Boyaka E; Jablonsky M; Naren AP; Jackson PL; Muccio DD; Kirk KL
    Proc Natl Acad Sci U S A; 2004 May; 101(21):8221-6. PubMed ID: 15141088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cystic fibrosis transmembrane conductance regulator (CFTR) and its stability.
    Meng X; Clews J; Kargas V; Wang X; Ford RC
    Cell Mol Life Sci; 2017 Jan; 74(1):23-38. PubMed ID: 27734094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetics of cystic fibrosis: CFTR mutation classifications toward genotype-based CF therapies.
    Fanen P; Wohlhuter-Haddad A; Hinzpeter A
    Int J Biochem Cell Biol; 2014 Jul; 52():94-102. PubMed ID: 24631642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of delta F508 cystic fibrosis transmembrane conductance regulator protein and related chloride transport properties in the gallbladder epithelium from cystic fibrosis patients.
    Dray-Charier N; Paul A; Scoazec JY; Veissière D; Mergey M; Capeau J; Soubrane O; Housset C
    Hepatology; 1999 Jun; 29(6):1624-34. PubMed ID: 10347100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytoskeleton and CFTR.
    Edelman A
    Int J Biochem Cell Biol; 2014 Jul; 52():68-72. PubMed ID: 24685681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi.
    Farinha CM; Matos P; Amaral MD
    FEBS J; 2013 Sep; 280(18):4396-406. PubMed ID: 23773658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macromolecular interactions and ion transport in cystic fibrosis.
    Guggino WB; Banks-Schlegel SP
    Am J Respir Crit Care Med; 2004 Oct; 170(7):815-20. PubMed ID: 15447951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive.
    Denning GM; Anderson MP; Amara JF; Marshall J; Smith AE; Welsh MJ
    Nature; 1992 Aug; 358(6389):761-4. PubMed ID: 1380673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functions of the cystic fibrosis transmembrane conductance regulator protein.
    Frizzell RA
    Am J Respir Crit Care Med; 1995 Mar; 151(3 Pt 2):S54-8. PubMed ID: 7533606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective activation of cystic fibrosis transmembrane conductance regulator Cl- and HCO3- conductances.
    Reddy MM; Quinton PM
    JOP; 2001 Jul; 2(4 Suppl):212-8. PubMed ID: 11875262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation.
    Haardt M; Benharouga M; Lechardeur D; Kartner N; Lukacs GL
    J Biol Chem; 1999 Jul; 274(31):21873-7. PubMed ID: 10419506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cystic fibrosis transmembrane conductance regulator (CFTR) and renal function.
    Stanton BA
    Wien Klin Wochenschr; 1997 Jun; 109(12-13):457-64. PubMed ID: 9261986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cystic fibrosis transmembrane conductance regulator is expressed in mucin granules from Calu-3 and primary human airway epithelial cells.
    LeSimple P; Goepp J; Palmer ML; Fahrenkrug SC; O'Grady SM; Ferraro P; Robert R; Hanrahan JW
    Am J Respir Cell Mol Biol; 2013 Oct; 49(4):511-6. PubMed ID: 23742042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional cystic fibrosis transmembrane conductance regulator tagged with an epitope of the vesicular stomatis virus glycoprotein can be addressed to the apical domain of polarized cells.
    Costa de Beauregard MA; Edelman A; Chesnoy-Marchais D; Tondelier D; Lapillonne A; El Marjou F; Robine S; Louvard D
    Eur J Cell Biol; 2000 Nov; 79(11):795-802. PubMed ID: 11139142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deletion of Phe508 in the first nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator increases its affinity for the heat shock cognate 70 chaperone.
    Scott-Ward TS; Amaral MD
    FEBS J; 2009 Dec; 276(23):7097-109. PubMed ID: 19878303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis and degradation of CFTR.
    Kopito RR
    Physiol Rev; 1999 Jan; 79(1 Suppl):S167-73. PubMed ID: 9922380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The multiple ubiquitination mechanisms in CFTR peripheral quality control.
    Taniguchi S; Fukuda R; Okiyoneda T
    Biochem Soc Trans; 2023 Jun; 51(3):1297-1306. PubMed ID: 37140364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacological induction of CFTR function in patients with cystic fibrosis: mutation-specific therapy.
    Kerem E
    Pediatr Pulmonol; 2005 Sep; 40(3):183-96. PubMed ID: 15880796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.