These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 24686004)
1. Direct electrochemistry of cytochrome c immobilized on gold electrode surface via Zr(IV) ion glue and its activity for ascorbic acid. Shervedani RK; Foroushani MS Bioelectrochemistry; 2014 Aug; 98():53-63. PubMed ID: 24686004 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical performance of gold nanoparticle-cytochrome c hybrid interface for H2O2 detection. Yagati AK; Lee T; Min J; Choi JW Colloids Surf B Biointerfaces; 2012 Apr; 92():161-7. PubMed ID: 22197224 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical determination of calf thymus DNA on Zr(IV) immobilized on gold-mercaptopropionic-acid self-assembled monolayer. Shervedani RK; Pourbeyram S Bioelectrochemistry; 2010 Feb; 77(2):100-5. PubMed ID: 19716776 [TBL] [Abstract][Full Text] [Related]
4. Direct electrochemistry and electrocatalytic activity of cytochrome c covalently immobilized on a boron-doped nanocrystalline diamond electrode. Zhou Y; Zhi J; Zou Y; Zhang W; Lee ST Anal Chem; 2008 Jun; 80(11):4141-6. PubMed ID: 18447324 [TBL] [Abstract][Full Text] [Related]
5. Reversible immobilization and direct electron transfer of cytochrome c on a pH-sensitive polymer interface. Zhou J; Lu X; Hu J; Li J Chemistry; 2007; 13(10):2847-53. PubMed ID: 17183600 [TBL] [Abstract][Full Text] [Related]
6. Biosensor based on chemically-designed anchorable cytochrome c for the detection of H₂O₂ released by aquatic cells. Suárez G; Santschi C; Martin OJ; Slaveykova VI Biosens Bioelectron; 2013 Apr; 42():385-90. PubMed ID: 23220065 [TBL] [Abstract][Full Text] [Related]
7. Amperometric sensor for hydrogen peroxide based on immobilized cytochrome c on binary self-assembled monolayers. Ji X; Nakamura T Anal Sci; 2009 May; 25(5):659-63. PubMed ID: 19430149 [TBL] [Abstract][Full Text] [Related]
8. Direct electrochemistry and electrocatalysis of cytochrome c immobilized on gold nanoparticles-chitosan-carbon nanotubes-modified electrode. Xiang C; Zou Y; Sun LX; Xu F Talanta; 2007 Nov; 74(2):206-11. PubMed ID: 18371631 [TBL] [Abstract][Full Text] [Related]
9. Syntheses of fully sulfonated polyaniline nano-networks and its application to the direct electrochemistry of cytochrome c. Zhang L; Jiang X; Niu L; Dong S Biosens Bioelectron; 2006 Jan; 21(7):1107-15. PubMed ID: 15913978 [TBL] [Abstract][Full Text] [Related]
10. Effect of the electrostatic interaction on the redox reaction of positively charged cytochrome C adsorbed on the negatively charged surfaces of acid-terminated alkanethiol monolayers on a Au(111) electrode. Imabayashi S; Mita T; Kakiuchi T Langmuir; 2005 Feb; 21(4):1470-4. PubMed ID: 15697296 [TBL] [Abstract][Full Text] [Related]
11. Direct electrochemistry behavior of cytochrome c/L-cysteine modified electrode and its electrocatalytic oxidation to nitric oxide. Liu YC; Cui SQ; Zhao J; Yang ZS Bioelectrochemistry; 2007 May; 70(2):416-20. PubMed ID: 16872916 [TBL] [Abstract][Full Text] [Related]
12. Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin. Zhang L; Jiang X; Wang E; Dong S Biosens Bioelectron; 2005 Aug; 21(2):337-45. PubMed ID: 16023961 [TBL] [Abstract][Full Text] [Related]
13. Cytochrome c self-assembly on alkanethiol monolayer electrodes as characterized by AFM, IR, QCM, and direct electrochemistry. Nakano K; Yoshitake T; Yamashita Y; Bowden EF Langmuir; 2007 May; 23(11):6270-5. PubMed ID: 17461603 [TBL] [Abstract][Full Text] [Related]
14. Comparative electrochemical study of new self-assembled monolayers of 2-{[(Z)-1-(3-furyl)methylidene]amino}-1-benzenethiol and 2-{[(2-sulfanylphenyl)imino]methyl}phenol for determination of dopamine in the presence of high concentration of ascorbic acid and uric acid. Behpour M; Ghoreishi SM; Honarmand E; Salavati-Niasari M Analyst; 2011 May; 136(9):1979-86. PubMed ID: 21409249 [TBL] [Abstract][Full Text] [Related]
15. Direct electrochemistry and electrocatalysis of hemoglobin in nafion/carbon nanochip film on glassy carbon electrode. George S; Lee HK J Phys Chem B; 2009 Nov; 113(47):15445-54. PubMed ID: 19883043 [TBL] [Abstract][Full Text] [Related]
16. Direct electrochemistry of cytochrome c on a phosphonic acid terminated self-assembled monolayers. Chen Y; Yang XJ; Guo LR; Jin B; Xia XH; Zheng LM Talanta; 2009 Apr; 78(1):248-52. PubMed ID: 19174233 [TBL] [Abstract][Full Text] [Related]
17. Immobilization of cytochrome c and its application as electrochemical biosensors. Aghamiri ZS; Mohsennia M; Rafiee-Pour HA Talanta; 2018 Jan; 176():195-207. PubMed ID: 28917741 [TBL] [Abstract][Full Text] [Related]
18. Direct electrochemistry and intramolecular electron transfer of ascorbate oxidase confined on L-cysteine self-assembled gold electrode. Patil B; Kobayashi Y; Fujikawa S; Okajima T; Mao L; Ohsaka T Bioelectrochemistry; 2014 Feb; 95():15-22. PubMed ID: 24189123 [TBL] [Abstract][Full Text] [Related]
19. Morphology-dependent electrochemistry and electrocatalytical activity of cytochrome c. Liu H; Tian Y; Deng Z Langmuir; 2007 Aug; 23(18):9487-94. PubMed ID: 17665934 [TBL] [Abstract][Full Text] [Related]
20. Cytochrome c biosensor for determination of trace levels of cyanide and arsenic compounds. Fuku X; Iftikar F; Hess E; Iwuoha E; Baker P Anal Chim Acta; 2012 Jun; 730():49-59. PubMed ID: 22632044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]