BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

456 related articles for article (PubMed ID: 24686131)

  • 1. Genetic engineering of crops: a ray of hope for enhanced food security.
    Gill SS; Gill R; Tuteja R; Tuteja N
    Plant Signal Behav; 2014; 9(3):e28545. PubMed ID: 24686131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agricultural biotechnology for crop improvement in a variable climate: hope or hype?
    Varshney RK; Bansal KC; Aggarwal PK; Datta SK; Craufurd PQ
    Trends Plant Sci; 2011 Jul; 16(7):363-71. PubMed ID: 21497543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ameliorating the effects of multiple stresses on agronomic traits in crops: modern biotechnological and omics approaches.
    Haq SAU; Bashir T; Roberts TH; Husaini AM
    Mol Biol Rep; 2023 Dec; 51(1):41. PubMed ID: 38158512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Challenges and perspectives to improve crop drought and salinity tolerance.
    Cominelli E; Conti L; Tonelli C; Galbiati M
    N Biotechnol; 2013 May; 30(4):355-61. PubMed ID: 23165101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgenic Breeding Approaches for Improving Abiotic Stress Tolerance: Recent Progress and Future Perspectives.
    Anwar A; Kim JK
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32295026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nexus on climate change: agriculture and possible solution to cope future climate change stresses.
    Shahzad A; Ullah S; Dar AA; Sardar MF; Mehmood T; Tufail MA; Shakoor A; Haris M
    Environ Sci Pollut Res Int; 2021 Mar; 28(12):14211-14232. PubMed ID: 33515149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security.
    Anderson JA; Gipmans M; Hurst S; Layton R; Nehra N; Pickett J; Shah DM; Souza TL; Tripathi L
    J Agric Food Chem; 2016 Jan; 64(2):383-93. PubMed ID: 26785813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Abiotic Stress Tolerance in Crop Plants through CRISPR Genome Editing.
    Rahman MU; Zulfiqar S; Raza MA; Ahmad N; Zhang B
    Cells; 2022 Nov; 11(22):. PubMed ID: 36429019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing naturally stress-resistant crops for a sustainable agriculture.
    Zhang H; Li Y; Zhu JK
    Nat Plants; 2018 Dec; 4(12):989-996. PubMed ID: 30478360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Genetic Approaches for Environmental Stress Tolerant Crop Plants: Progress and Prospects.
    Kaur R; Kumar Bhunia R; Ghosh AK
    Recent Pat Biotechnol; 2016; 10(1):12-29. PubMed ID: 27494733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome engineering for crop improvement and future agriculture.
    Gao C
    Cell; 2021 Mar; 184(6):1621-1635. PubMed ID: 33581057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic manipulations in crops: Challenges and opportunities.
    Ahmad N; Mukhtar Z
    Genomics; 2017 Oct; 109(5-6):494-505. PubMed ID: 28778540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Where are the drought tolerant crops? An assessment of more than two decades of plant biotechnology effort in crop improvement.
    Nuccio ML; Paul M; Bate NJ; Cohn J; Cutler SR
    Plant Sci; 2018 Aug; 273():110-119. PubMed ID: 29907303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate resilient crops for improving global food security and safety.
    Dhankher OP; Foyer CH
    Plant Cell Environ; 2018 May; 41(5):877-884. PubMed ID: 29663504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of climate change on crop yield and role of model for achieving food security.
    Kumar M
    Environ Monit Assess; 2016 Aug; 188(8):465. PubMed ID: 27418072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crop breeding - From experience-based selection to precision design.
    Liu J; Fernie AR; Yan J
    J Plant Physiol; 2021 Jan; 256():153313. PubMed ID: 33202375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rewilding crops for climate resilience: economic analysis and de novo domestication strategies.
    Razzaq A; Wani SH; Saleem F; Yu M; Zhou M; Shabala S
    J Exp Bot; 2021 Sep; 72(18):6123-6139. PubMed ID: 34114599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.
    Kujur A; Saxena MS; Bajaj D; Laxmi ; Parida SK
    J Biosci; 2013 Dec; 38(5):971-87. PubMed ID: 24296899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global agricultural intensification during climate change: a role for genomics.
    Abberton M; Batley J; Bentley A; Bryant J; Cai H; Cockram J; de Oliveira AC; Cseke LJ; Dempewolf H; De Pace C; Edwards D; Gepts P; Greenland A; Hall AE; Henry R; Hori K; Howe GT; Hughes S; Humphreys M; Lightfoot D; Marshall A; Mayes S; Nguyen HT; Ogbonnaya FC; Ortiz R; Paterson AH; Tuberosa R; Valliyodan B; Varshney RK; Yano M
    Plant Biotechnol J; 2016 Apr; 14(4):1095-8. PubMed ID: 26360509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.