BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24686225)

  • 1. Position-dependent characterization of passive wrist stiffness.
    Pando AL; Lee H; Drake WB; Hogan N; Charles SK
    IEEE Trans Biomed Eng; 2014 Aug; 61(8):2235-44. PubMed ID: 24686225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of wrist and forearm rotations.
    Peaden AW; Charles SK
    J Biomech; 2014 Aug; 47(11):2779-85. PubMed ID: 24745814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of wrist rotations.
    Charles SK; Hogan N
    J Biomech; 2011 Feb; 44(4):614-21. PubMed ID: 21130996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive stiffness of coupled wrist and forearm rotations.
    Drake WB; Charles SK
    Ann Biomed Eng; 2014 Sep; 42(9):1853-66. PubMed ID: 24912766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The passive stiffness of the wrist and forearm.
    Formica D; Charles SK; Zollo L; Guglielmelli E; Hogan N; Krebs HI
    J Neurophysiol; 2012 Aug; 108(4):1158-66. PubMed ID: 22649208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passive Wrist Stiffness: The Influence of Handedness.
    Durand S; Rohan CP; Hamilton T; Skalli W; Krebs HI
    IEEE Trans Biomed Eng; 2019 Mar; 66(3):656-665. PubMed ID: 29993512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stiffness, not inertial coupling, determines path curvature of wrist motions.
    Charles SK; Hogan N
    J Neurophysiol; 2012 Feb; 107(4):1230-40. PubMed ID: 22131378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proximal-distal differences in movement smoothness reflect differences in biomechanics.
    Salmond LH; Davidson AD; Charles SK
    J Neurophysiol; 2017 Mar; 117(3):1239-1257. PubMed ID: 28003410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perturbation amplitude affects linearly estimated neuromechanical wrist joint properties.
    Klomp A; de Groot JH; de Vlugt E; Meskers CG; Arendzen JH; van der Helm FC
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):1005-14. PubMed ID: 24216632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Passive and active wrist joint stiffness following eccentric exercise.
    Leger AB; Milner TE
    Eur J Appl Physiol; 2000 Aug; 82(5-6):472-9. PubMed ID: 10985603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanical axes of the wrist are oriented obliquely to the anatomical axes.
    Crisco JJ; Heard WM; Rich RR; Paller DJ; Wolfe SW
    J Bone Joint Surg Am; 2011 Jan; 93(2):169-77. PubMed ID: 21248214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling between wrist flexion-extension and radial-ulnar deviation.
    Li ZM; Kuxhaus L; Fisk JA; Christophel TH
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):177-83. PubMed ID: 15621323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of common wrist orthoses on the stiffness of wrist rotations.
    Seegmiller DB; Eggett DL; Charles SK
    J Rehabil Res Dev; 2016; 53(6):1151-1166. PubMed ID: 28355037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo estimation of the short-range stiffness of cross-bridges from joint rotation.
    van Eesbeek S; de Groot JH; van der Helm FC; de Vlugt E
    J Biomech; 2010 Sep; 43(13):2539-47. PubMed ID: 20541761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy of an electrogoniometer relative to optical motion tracking for quantifying wrist range of motion.
    McHugh BP; Morton AM; Akhbari B; Molino J; Crisco JJ
    J Med Eng Technol; 2020 Feb; 44(2):49-54. PubMed ID: 31997679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-vivo three-dimensional carpal bone kinematics during flexion-extension and radio-ulnar deviation of the wrist: Dynamic motion versus step-wise static wrist positions.
    Foumani M; Strackee SD; Jonges R; Blankevoort L; Zwinderman AH; Carelsen B; Streekstra GJ
    J Biomech; 2009 Dec; 42(16):2664-71. PubMed ID: 19748626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of dominant hand range of motion among throwing types in baseball pitchers.
    Wang LH; Kuo LC; Shih SW; Lo KC; Su FC
    Hum Mov Sci; 2013 Aug; 32(4):719-29. PubMed ID: 23764035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wrist motion in handrim wheelchair propulsion.
    Veeger HE; Meershoek LS; van der Woude LH; Langenhoff JM
    J Rehabil Res Dev; 1998 Jul; 35(3):305-13. PubMed ID: 9704314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A geometric framework for the estimation of joint stiffness of the human wrist.
    Formica D; Azhar M; Tommasino P; Campolo D
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():151-156. PubMed ID: 31374622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of lunate position on range of motion after a four-corner arthrodesis: a biomechanical simulation study.
    Dvinskikh NA; Blankevoort L; Strackee SD; Grimbergen CA; Streekstra GJ
    J Biomech; 2011 Apr; 44(7):1387-92. PubMed ID: 21306715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.