These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 24686292)

  • 1. Multivariable dynamic ankle mechanical impedance with relaxed muscles.
    Lee H; Krebs HI; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1104-14. PubMed ID: 24686292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multivariable dynamic ankle mechanical impedance with active muscles.
    Lee H; Krebs HI; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):971-81. PubMed ID: 25203497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multivariable Static Ankle Mechanical Impedance With Active Muscles.
    Lee H; Ho P; Rastgaar M; Krebs HI; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):44-52. PubMed ID: 24107970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-Varying Ankle Mechanical Impedance During Human Locomotion.
    Lee H; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):755-64. PubMed ID: 25137730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between ankle stiffness structure and muscle activation.
    Lee H; Wang S; Hogan N
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4879-82. PubMed ID: 23367021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multivariable static ankle mechanical impedance with relaxed muscles.
    Lee H; Ho P; Rastgaar MA; Krebs HI; Hogan N
    J Biomech; 2011 Jul; 44(10):1901-8. PubMed ID: 21571278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new robotic approach to characterize mechanical impedance and energetic passivity of the human ankle during standing.
    Nalam V; Hyunglae Lee
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4123-4126. PubMed ID: 29060804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of human ankle impedance during the stance phase of walking.
    Rouse EJ; Hargrove LJ; Perreault EJ; Kuiken TA
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):870-8. PubMed ID: 24760937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetic Passivity of the Human Ankle Joint.
    Lee H; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1416-1425. PubMed ID: 26978829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Directional Ankle Impedance During Standing Postures.
    Ribeiro GA; Knop LN; Rastgaar M
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2224-2235. PubMed ID: 32822301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multivariable passive ankle impedance in stroke patients: A preliminary study.
    Moura Coelho R; Durand S; Martins J; Igo Krebs H
    J Biomech; 2022 Jan; 130():110829. PubMed ID: 34749162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sex Differences in 2-DOF Human Ankle Stiffness in Relaxed and Contracted Muscles.
    Trevino J; Lee H
    Ann Biomed Eng; 2018 Dec; 46(12):2048-2056. PubMed ID: 30003504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-varying impedance of the human ankle in the sagittal and frontal planes during straight walk and turning steps.
    Ficanha EM; Ribeiro GA; Knop L; Rastgaar M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1413-1418. PubMed ID: 28814018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Preliminary Evaluation of a Two DOFs Cable-Driven Ankle-Foot Prosthesis with Active Dorsiflexion-Plantarflexion and Inversion-Eversion.
    Ficanha EM; Ribeiro GA; Dallali H; Rastgaar M
    Front Bioeng Biotechnol; 2016; 4():36. PubMed ID: 27200342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the effect of muscular cocontraction on the 3-D human arm impedance.
    Patel H; O'Neill G; Artemiadis P
    IEEE Trans Biomed Eng; 2014 Oct; 61(10):2602-8. PubMed ID: 24835125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active stiffness of the ankle in response to inertial and elastic loads.
    Granata KP; Wilson SE; Massimini AK; Gabriel R
    J Electromyogr Kinesiol; 2004 Oct; 14(5):599-609. PubMed ID: 15301778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous Quantification of Ankle, Muscle, and Tendon Impedance in Humans.
    Jakubowski KL; Ludvig D; Bujnowski D; Lee SSM; Perreault EJ
    IEEE Trans Biomed Eng; 2022 Dec; 69(12):3657-3666. PubMed ID: 35594215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of ankle muscle activation on postural sway during quiet stance.
    Warnica MJ; Weaver TB; Prentice SD; Laing AC
    Gait Posture; 2014 Apr; 39(4):1115-21. PubMed ID: 24613374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss.
    Bloem BR; Allum JH; Carpenter MG; Verschuuren JJ; Honegger F
    Exp Brain Res; 2002 Jan; 142(1):91-107. PubMed ID: 11797087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ankle Joint Intrinsic Dynamics is More Complex than a Mass-Spring-Damper Model.
    Sobhani Tehrani E; Jalaleddini K; Kearney RE
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1568-1580. PubMed ID: 28287979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.