BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24686455)

  • 1. Adverse prenatal environment and kidney development: implications for programing of adult disease.
    Dorey ES; Pantaleon M; Weir KA; Moritz KM
    Reproduction; 2014 Jun; 147(6):R189-98. PubMed ID: 24686455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preterm birth and the kidney: implications for long-term renal health.
    Gubhaju L; Sutherland MR; Black MJ
    Reprod Sci; 2011 Apr; 18(4):322-33. PubMed ID: 21427457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prenatal causes of kidney disease.
    Koleganova N; Piecha G; Ritz E
    Blood Purif; 2009; 27(1):48-52. PubMed ID: 19169017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review: Sex specific programming: a critical role for the renal renin-angiotensin system.
    Moritz KM; Cuffe JS; Wilson LB; Dickinson H; Wlodek ME; Simmons DG; Denton KM
    Placenta; 2010 Mar; 31 Suppl():S40-6. PubMed ID: 20116093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prenatal exposure to glucocorticoids and adult disease.
    Dodic M; Moritz K; Wintour EM
    Arch Physiol Biochem; 2003 Feb; 111(1):61-9. PubMed ID: 12715276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of maternal nutrition, metabolic function and the placenta in developmental programming of renal dysfunction.
    Richter VF; Briffa JF; Moritz KM; Wlodek ME; Hryciw DH
    Clin Exp Pharmacol Physiol; 2016 Jan; 43(1):135-41. PubMed ID: 26475203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms involved in developmental programming of hypertension and renal diseases. Gender differences.
    Tomat AL; Salazar FJ
    Horm Mol Biol Clin Investig; 2014 May; 18(2):63-77. PubMed ID: 25390003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic basis for fetal origins of age-related disease.
    Thompson RF; Einstein FH
    J Womens Health (Larchmt); 2010 Mar; 19(3):581-7. PubMed ID: 20136551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetics of renal hypoplasia: insights into the mechanisms controlling nephron endowment.
    Cain JE; Di Giovanni V; Smeeton J; Rosenblum ND
    Pediatr Res; 2010 Aug; 68(2):91-8. PubMed ID: 20421843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the role of maternal diet on kidney development; an opportunity to improve cardiovascular and renal health for future generations.
    Wood-Bradley RJ; Barrand S; Giot A; Armitage JA
    Nutrients; 2015 Mar; 7(3):1881-905. PubMed ID: 25774605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adverse consequences of accelerated neonatal growth: cardiovascular and renal issues.
    Simeoni U; Ligi I; Buffat C; Boubred F
    Pediatr Nephrol; 2011 Apr; 26(4):493-508. PubMed ID: 20938692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early origin of adult renal disease.
    Maringhini S; Corrado C; Maringhini G; Cusumano R; Azzolina V; Leone F
    J Matern Fetal Neonatal Med; 2010 Oct; 23 Suppl 3():84-6. PubMed ID: 20822331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early determinants of cardiovascular disease.
    Santos MS; Joles JA
    Best Pract Res Clin Endocrinol Metab; 2012 Oct; 26(5):581-97. PubMed ID: 22980042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrauterine programming of nephron number: the fetal flaw revisited.
    Marchand MC; Langley-Evans SC
    J Nephrol; 2001; 14(5):327-31. PubMed ID: 11730264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of nutrition during early life on the epigenetic regulation of transcription and implications for human diseases.
    Lillycrop KA; Burdge GC
    J Nutrigenet Nutrigenomics; 2011; 4(5):248-60. PubMed ID: 22353662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The next generation of disease risk: are the effects of prenatal nutrition transmitted across generations? Evidence from animal and human studies.
    Roseboom TJ; Watson ED
    Placenta; 2012 Nov; 33 Suppl 2():e40-4. PubMed ID: 22902003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Barker, Brenner, and babies--early environment and renal disease in adulthood.
    Garrett PJ; Bass PS; Sandeman DD
    J Pathol; 1994 Aug; 173(4):299-300. PubMed ID: 7965388
    [No Abstract]   [Full Text] [Related]  

  • 18. Maternal-foetal epigenetic interactions in the beginning of cardiovascular damage.
    Napoli C; Infante T; Casamassimi A
    Cardiovasc Res; 2011 Dec; 92(3):367-74. PubMed ID: 21764886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms underlying developmental programming of elevated blood pressure and vascular dysfunction: evidence from human studies and experimental animal models.
    Nuyt AM
    Clin Sci (Lond); 2008 Jan; 114(1):1-17. PubMed ID: 18047465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of perinatal, late foetal, and early embryonic insults on the cardiovascular phenotype in experimental animal models and humans.
    Meister TA; Rexhaj E; Rimoldi SF; Scherrer U; Sartori C
    Vasa; 2016 Nov; 45(6):439-449. PubMed ID: 27598052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.