These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24686466)

  • 1. Effects of phonetic context on relative fundamental frequency.
    Lien YA; Gattuccio CI; Stepp CE
    J Speech Lang Hear Res; 2014 Aug; 57(4):1259-67. PubMed ID: 24686466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of voice relative fundamental frequency estimates derived from an accelerometer signal and low-pass filtered and unprocessed microphone signals.
    Lien YA; Stepp CE
    J Acoust Soc Am; 2014 May; 135(5):2977-85. PubMed ID: 24815277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effects of Stress Type, Vowel Identity, Baseline f
    Park Y; Stepp CE
    J Voice; 2019 Sep; 33(5):603-610. PubMed ID: 30078521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative Fundamental Frequency in Children With and Without Vocal Fold Nodules.
    Heller Murray ES; Segina RK; Woodnorth GH; Stepp CE
    J Speech Lang Hear Res; 2020 Feb; 63(2):361-371. PubMed ID: 32073342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Test-Retest Reliability of Relative Fundamental Frequency and Conventional Acoustic, Aerodynamic, and Perceptual Measures in Individuals With Healthy Voices.
    Park Y; Stepp CE
    J Speech Lang Hear Res; 2019 Jun; 62(6):1707-1718. PubMed ID: 31181173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voice Relative Fundamental Frequency Via Neck-Skin Acceleration in Individuals With Voice Disorders.
    Lien YA; Calabrese CR; Michener CM; Murray EH; Van Stan JH; Mehta DD; Hillman RE; Noordzij JP; Stepp CE
    J Speech Lang Hear Res; 2015 Oct; 58(5):1482-7. PubMed ID: 26134171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-frequency components of normal and dysphonic voices.
    Valencia Naranjo N; Mendoza Lara E; Mateo Rodríguez I; Carballo García G
    J Voice; 1994 Jun; 8(2):157-62. PubMed ID: 8061771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the Clinical Utility of Relative Fundamental Frequency as an Objective Measure of Vocal Hyperfunction.
    Roy N; Fetrow RA; Merrill RM; Dromey C
    J Speech Lang Hear Res; 2016 Oct; 59(5):1002-1017. PubMed ID: 27768175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individual Monitoring of Vocal Effort With Relative Fundamental Frequency: Relationships With Aerodynamics and Listener Perception.
    Lien YA; Michener CM; Eadie TL; Stepp CE
    J Speech Lang Hear Res; 2015 Jun; 58(3):566-75. PubMed ID: 25675090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of vocal hyperfunction on relative fundamental frequency during voicing offset and onset.
    Stepp CE; Hillman RE; Heaton JT
    J Speech Lang Hear Res; 2010 Oct; 53(5):1220-6. PubMed ID: 20643798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Adventitious Acute Vocal Trauma: Relative Fundamental Frequency and Listener Perception.
    Murray ES; Hands GL; Calabrese CR; Stepp CE
    J Voice; 2016 Mar; 30(2):177-85. PubMed ID: 26028369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Relationship Between Relative Fundamental Frequency and a Kinematic Estimate of Laryngeal Stiffness in Healthy Adults.
    McKenna VS; Heller Murray ES; Lien YS; Stepp CE
    J Speech Lang Hear Res; 2016 Dec; 59(6):1283-1294. PubMed ID: 27936279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated estimation of relative fundamental frequency.
    Lien YA; Stepp CE
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2136-9. PubMed ID: 24110143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in Relative Fundamental Frequency Under Increased Cognitive Load in Individuals With Healthy Voices.
    Dahl KL; Stepp CE
    J Speech Lang Hear Res; 2021 Apr; 64(4):1189-1196. PubMed ID: 33788635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative Fundamental Frequency Distinguishes Between Phonotraumatic and Non-Phonotraumatic Vocal Hyperfunction.
    Heller Murray ES; Lien YS; Van Stan JH; Mehta DD; Hillman RE; Pieter Noordzij J; Stepp CE
    J Speech Lang Hear Res; 2017 Jun; 60(6):1507-1515. PubMed ID: 28595317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic correlate of vocal effort in spasmodic dysphonia.
    Eadie TL; Stepp CE
    Ann Otol Rhinol Laryngol; 2013 Mar; 122(3):169-76. PubMed ID: 23577569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between perception of vocal effort and relative fundamental frequency during voicing offset and onset.
    Stepp CE; Sawin DE; Eadie TL
    J Speech Lang Hear Res; 2012 Dec; 55(6):1887-96. PubMed ID: 22615477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The emergence of mature gestural patterns in the production of voiceless and voiced word-final stops.
    Nittrouer S; Estee S; Lowenstein JH; Smith J
    J Acoust Soc Am; 2005 Jan; 117(1):351-64. PubMed ID: 15704427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of consonant voicing characteristics on sentence production in abductor versus adductor spasmodic dysphonia.
    Cannito MP; Chorna LB; Kahane JC; Dworkin JP
    J Voice; 2014 May; 28(3):394.e13-22. PubMed ID: 24440058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cricothyroid muscle in voicing control.
    Löfqvist A; Baer T; McGarr NS; Story RS
    J Acoust Soc Am; 1989 Mar; 85(3):1314-21. PubMed ID: 2708673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.