These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
430 related articles for article (PubMed ID: 24686769)
1. Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins. Ben-Dov E Toxins (Basel); 2014 Mar; 6(4):1222-43. PubMed ID: 24686769 [TBL] [Abstract][Full Text] [Related]
2. Potential of Cry10Aa and Cyt2Ba, Two Minority δ-endotoxins Produced by Valtierra-de-Luis D; Villanueva M; Lai L; Williams T; Caballero P Toxins (Basel); 2020 May; 12(6):. PubMed ID: 32485828 [No Abstract] [Full Text] [Related]
3. An alpha-amylase is a novel receptor for Bacillus thuringiensis ssp. israelensis Cry4Ba and Cry11Aa toxins in the malaria vector mosquito Anopheles albimanus (Diptera: Culicidae). Fernandez-Luna MT; Lanz-Mendoza H; Gill SS; Bravo A; Soberon M; Miranda-Rios J Environ Microbiol; 2010 Mar; 12(3):746-57. PubMed ID: 20002140 [TBL] [Abstract][Full Text] [Related]
4. Binding of Bacillus thuringiensis subsp. israelensis Cry4Ba to Cyt1Aa has an important role in synergism. Cantón PE; Zanicthe Reyes EZ; Ruiz de Escudero I; Bravo A; Soberón M Peptides; 2011 Mar; 32(3):595-600. PubMed ID: 20558220 [TBL] [Abstract][Full Text] [Related]
5. Isolation and characterization of native Bacillus thuringiensis strains from Saudi Arabia with enhanced larvicidal toxicity against the mosquito vector Anopheles gambiae (s.l.). El-Kersh TA; Ahmed AM; Al-Sheikh YA; Tripet F; Ibrahim MS; Metwalli AA Parasit Vectors; 2016 Dec; 9(1):647. PubMed ID: 27993165 [TBL] [Abstract][Full Text] [Related]
6. Monitoring resistance to Bacillus thuringiensis subsp. israelensis in the field by performing bioassays with each Cry toxin separately. Tetreau G; Stalinski R; David JP; Després L Mem Inst Oswaldo Cruz; 2013 Nov; 108(7):894-900. PubMed ID: 24037105 [TBL] [Abstract][Full Text] [Related]
7. Cyt1Aa from Bacillus thuringiensis subsp. israelensis enhances mosquitocidal activity of B. thuringiensis subsp. kurstaki HD-1 against Aedes aegypti but not Culex quinquefasciatus. Park HW; Pino BC; Kozervanich-Chong S; Hafkenscheid EA; Oliverio RM; Federici BA; Bideshi DK J Microbiol Biotechnol; 2013 Jan; 23(1):88-91. PubMed ID: 23314373 [TBL] [Abstract][Full Text] [Related]
8. Separation, quantification and mosquito larvicidal activity of insecticidal crystal proteins of Geetha I; Regnakumari P; Manonmani AM J Vector Borne Dis; 2017; 54(2):187-190. PubMed ID: 28748842 [No Abstract] [Full Text] [Related]
9. Effects and mechanisms of Bacillus thuringiensis crystal toxins for mosquito larvae. Zhang Q; Hua G; Adang MJ Insect Sci; 2017 Oct; 24(5):714-729. PubMed ID: 27628909 [TBL] [Abstract][Full Text] [Related]
10. Toxin stability improvement and toxicity increase against dipteran and lepidopteran larvae of Bacillus thuringiensis crystal protein Cry2Aa. Elleuch J; Jaoua S; Ginibre C; Chandre F; Tounsi S; Zghal RZ Pest Manag Sci; 2016 Dec; 72(12):2240-2246. PubMed ID: 26910489 [TBL] [Abstract][Full Text] [Related]
12. Long-term exposure of Aedes aegypti to Bacillus thuringiensis svar. israelensis did not involve altered susceptibility to this microbial larvicide or to other control agents. Carvalho KDS; Crespo MM; Araújo AP; da Silva RS; de Melo-Santos MAV; de Oliveira CMF; Silva-Filha MHNL Parasit Vectors; 2018 Dec; 11(1):673. PubMed ID: 30594214 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of insect susceptibility and larvicidal efficacy of Cry4Ba toxin by calcofluor. Leetachewa S; Khomkhum N; Sakdee S; Wang P; Moonsom S Parasit Vectors; 2018 Sep; 11(1):515. PubMed ID: 30236155 [TBL] [Abstract][Full Text] [Related]
14. Alkaline phosphatases are involved in the response of Aedes aegypti larvae to intoxication with Bacillus thuringiensis subsp. israelensis Cry toxins. Stalinski R; Laporte F; Després L; Tetreau G Environ Microbiol; 2016 Mar; 18(3):1022-36. PubMed ID: 26663676 [TBL] [Abstract][Full Text] [Related]
15. Variations in the mosquito larvicidal activities of toxins from Bacillus thuringiensis ssp. israelensis. Otieno-Ayayo ZN; Zaritsky A; Wirth MC; Manasherob R; Khasdan V; Cahan R; Ben-Dov E Environ Microbiol; 2008 Sep; 10(9):2191-9. PubMed ID: 18637949 [TBL] [Abstract][Full Text] [Related]
16. Cyt1A of Bacillus thuringiensis delays evolution of resistance to Cry11A in the mosquito Culex quinquefasciatus. Wirth MC; Park HW; Walton WE; Federici BA Appl Environ Microbiol; 2005 Jan; 71(1):185-9. PubMed ID: 15640186 [TBL] [Abstract][Full Text] [Related]
17. [The synergism between Mtx1 from Bacillus sphaericus and Cyt1 Aa from Bacillus thuringiensis to Culex quinquefasciatus]. Yang YK; Cai QX; Cai YJ; Yan JP; Yuan ZM Wei Sheng Wu Xue Bao; 2007 Jun; 47(3):456-60. PubMed ID: 17672305 [TBL] [Abstract][Full Text] [Related]
18. Recombinant Deng S-Q; Li N; Yang X-K; Lu H-Z; Liu J-H; Peng Z-Y; Wang L-M; Zhang M; Zhang C; Chen C Microbiol Spectr; 2024 Jul; 12(7):e0379223. PubMed ID: 38809029 [TBL] [Abstract][Full Text] [Related]
19. Effects of the P20 protein from Bacillus thuringiensis israelensis on insecticidal crystal protein Cry4Ba. Elleuch J; Zghal RZ; Ben Fguira I; Lacroix MN; Suissi J; Chandre F; Tounsi S; Jaoua S Int J Biol Macromol; 2015 Aug; 79():174-9. PubMed ID: 25931398 [TBL] [Abstract][Full Text] [Related]
20. Isolation and distribution of mosquito-larvicidal cry genes in Bacillus thuringiensis strains native to Saudi Arabia. El-kersh TA; Al-akeel RA; Al-sheikh YA; Alharbi SA Trop Biomed; 2014 Dec; 31(4):616-32. PubMed ID: 25776587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]