These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 24686925)

  • 1. Preliminary results on the influence of engineered artificial mucus layer on phonation.
    Döllinger M; Gröhn F; Berry DA; Eysholdt U; Luegmair G
    J Speech Lang Hear Res; 2014 Apr; 57(2):S637-47. PubMed ID: 24686925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lubrication mechanism of the larynx during phonation: an experiment in excised canine larynges.
    Nakagawa H; Fukuda H; Kawaida M; Shiotani A; Kanzaki J
    Folia Phoniatr Logop; 1998; 50(4):183-94. PubMed ID: 9819480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of impact stress using an aeroelastic model of voice production.
    Horácek J; Laukkanen AM; Sidlof P
    Logoped Phoniatr Vocol; 2007; 32(4):185-92. PubMed ID: 17990190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of a simulated system of straw phonation on the complete phonatory range of excised canine larynges.
    Kang J; Scholp A; Tangney J; Jiang JJ
    Eur Arch Otorhinolaryngol; 2019 Feb; 276(2):473-482. PubMed ID: 30631899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic mucus for an ex vivo phonation setup: Creation, application, and effect on excised porcine larynges.
    Peters G; Jakubaß B; Weidenfeller K; Kniesburges S; Böhringer D; Wendler O; Mueller SK; Gostian AO; Berry DA; Döllinger M; Semmler M
    J Acoust Soc Am; 2022 Dec; 152(6):3245. PubMed ID: 36586828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of epilarynx area on vocal fold dynamics.
    Döllinger M; Berry DA; Montequin DW
    Otolaryngol Head Neck Surg; 2006 Nov; 135(5):724-729. PubMed ID: 17071302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-speed laryngoscopic investigation of aryepiglottic trilling.
    Moisik SR; Esling JH; Crevier-Buchman L
    J Acoust Soc Am; 2010 Mar; 127(3):1548-58. PubMed ID: 20329855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization and quantification of the medial surface dynamics of an excised human vocal fold during phonation.
    Doellinger M; Berry DA
    J Voice; 2006 Sep; 20(3):401-13. PubMed ID: 16300925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic MRI of larynx and vocal fold vibrations in normal phonation.
    Ahmad M; Dargaud J; Morin A; Cotton F
    J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of biomechanical modeling of register transitions and voice instabilities with excised larynx experiments.
    Tokuda IT; Horácek J; Svec JG; Herzel H
    J Acoust Soc Am; 2007 Jul; 122(1):519-31. PubMed ID: 17614509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Glottal and supraglottal configuration during whispering].
    Fleischer S; Kothe C; Hess M
    Laryngorhinootologie; 2007 Apr; 86(4):271-5. PubMed ID: 17219333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical reconstruction of high-speed surface dynamics in an uncontrollable environment.
    Luegmair G; Kniesburges S; Zimmermann M; Sutor A; Eysholdt U; Döllinger M
    IEEE Trans Med Imaging; 2010 Dec; 29(12):1979-91. PubMed ID: 21118756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the biomechanical influence of epilaryngeal stricture on the vocal folds: a low-dimensional model of vocal-ventricular fold coupling.
    Moisik SR; Esling JH
    J Speech Lang Hear Res; 2014 Apr; 57(2):S687-704. PubMed ID: 24687007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of phonation instability pressure and phonation pressure range in excised larynges.
    Zhang Y; Reynders WJ; Jiang JJ; Tateya I
    J Speech Lang Hear Res; 2007 Jun; 50(3):611-20. PubMed ID: 17538104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A methodological study of hemilaryngeal phonation.
    Jiang JJ; Titze IR
    Laryngoscope; 1993 Aug; 103(8):872-82. PubMed ID: 8361290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.
    Bailly L; Henrich N; Pelorson X
    J Acoust Soc Am; 2010 May; 127(5):3212-22. PubMed ID: 21117769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerodynamics of the human larynx during vocal fold vibration.
    Plant RL
    Laryngoscope; 2005 Dec; 115(12):2087-100. PubMed ID: 16369149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voice source characteristics in Mongolian "throat singing" studied with high-speed imaging technique, acoustic spectra, and inverse filtering.
    Lindestad PA; Södersten M; Merker B; Granqvist S
    J Voice; 2001 Mar; 15(1):78-85. PubMed ID: 12269637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-speed registration of phonation-related glottal area variation during artificial lengthening of the vocal tract.
    Laukkanen AM; Pulakka H; Alku P; Vilkman E; Hertegård S; Lindestad PA; Larsson H; Granqvist S
    Logoped Phoniatr Vocol; 2007; 32(4):157-64. PubMed ID: 17917980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chaos in voice, from modeling to measurement.
    Jiang JJ; Zhang Y; McGilligan C
    J Voice; 2006 Mar; 20(1):2-17. PubMed ID: 15964740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.