These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 2468720)

  • 61. Ultrastructure of the bovine temporomandibular joint disc.
    Kuc IM; Scott PG
    Arch Oral Biol; 1994 Jan; 39(1):57-61. PubMed ID: 8179509
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Collagen family of proteins.
    van der Rest M; Garrone R
    FASEB J; 1991 Oct; 5(13):2814-23. PubMed ID: 1916105
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The role of proteoglycans in maintaining collagen fibril morphology.
    Dell'Orbo C; De Luca G; Gioglio L; Quacci D; Soldi C
    Histol Histopathol; 1995 Jul; 10(3):583-8. PubMed ID: 7579805
    [TBL] [Abstract][Full Text] [Related]  

  • 64. THE ULTRASTRUCTURE OF FLAGELLAR FIBRILS.
    PEASE DC
    J Cell Biol; 1963 Aug; 18(2):313-26. PubMed ID: 14079491
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Collagens of the bovine vitreous.
    Seery CM; Davison PF
    Invest Ophthalmol Vis Sci; 1991 Apr; 32(5):1540-50. PubMed ID: 2016136
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Echinoderm collagen fibrils grow by surface-nucleation-and-propagation from both centers and ends.
    Trotter JA; Kadler KE; Holmes DF
    J Mol Biol; 2000 Jul; 300(3):531-40. PubMed ID: 10884349
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Three-dimensional organization of the collagen fibrils in the rat sciatic nerve as revealed by transmission- and scanning electron microscopy.
    Ushiki T; Ide C
    Cell Tissue Res; 1990 Apr; 260(1):175-84. PubMed ID: 2340581
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Electron microscopic stereological study of collagen fibrils in bovine articular cartilage: volume and surface densities are best obtained indirectly (from length densities and diameters) using isotropic uniform random sampling.
    Långsjö TK; Hyttinen M; Pelttari A; Kiraly K; Arokoski J; Helminen HJ
    J Anat; 1999 Aug; 195 ( Pt 2)(Pt 2):281-93. PubMed ID: 10529063
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Morphological study on the human developing vitreous collagen fibrils and persistent hyperplastic primary vitreous.
    Akiya S; Uemura Y; Azuma N
    Ophthalmic Res; 1985; 17(1):60-4. PubMed ID: 3982784
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Collagen fibril formation in a wound healing model.
    White JF; Werkmeister JA; Darby IA; Bisucci T; Birk DE; Ramshaw JA
    J Struct Biol; 2002; 137(1-2):23-30. PubMed ID: 12064930
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A model of tenascin-X integration within the collagenous network.
    Lethias C; Carisey A; Comte J; Cluzel C; Exposito JY
    FEBS Lett; 2006 Nov; 580(26):6281-5. PubMed ID: 17078949
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Electron-microscopic study on the fibrillar network and fibrocyte--collagen interactions in the vitreous cortex at the ora serrata of human eyes with special regard to the role of disintegrating cells.
    Gärtner J
    Exp Eye Res; 1986 Jan; 42(1):21-33. PubMed ID: 3956602
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Intracellular biogenesis of collagen fibrils in 'activated fibroblasts' of tendo Achillis. An ultrastructural study in the New Zealand rabbit.
    González Santander R; Plasencia Arriba MA; Martinez Cuadrado G; Lopez Alonso A; González-Santander Martinez M; Martinez Alonso FJ; Monteagudo M; Toledo Lobo MV
    J Bone Joint Surg Br; 1999 May; 81(3):522-30. PubMed ID: 10872378
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Chromatin substructure: an electron microscopic study of thin-sectioned chromatin subjected to sequential protein extraction and water swelling procedures.
    Cameron IL; Pavlat WA; Jeter JR
    Anat Rec; 1979 Aug; 194(4):547-62. PubMed ID: 475016
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Identification of collagen fibril fusion during vertebrate tendon morphogenesis. The process relies on unipolar fibrils and is regulated by collagen-proteoglycan interaction.
    Graham HK; Holmes DF; Watson RB; Kadler KE
    J Mol Biol; 2000 Jan; 295(4):891-902. PubMed ID: 10656798
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Ultrastructure of the vitreous body of the rabbit.
    Pác L; Synek S; Moster MF
    Folia Morphol (Praha); 1989; 37(3):314-8. PubMed ID: 2606389
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Collagen fibril structure is affected by collagen concentration and decorin.
    Raspanti M; Viola M; Sonaggere M; Tira ME; Tenni R
    Biomacromolecules; 2007 Jul; 8(7):2087-91. PubMed ID: 17530890
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Anchoring of epithelia to underlying connective tissue: evidence of frayed ends of collagen fibrils directly merging with meshwork of lamina densa.
    Adachi E; Hayashi T
    J Electron Microsc (Tokyo); 1994 Oct; 43(5):264-71. PubMed ID: 7699306
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Collagen transformation in abdominal skin of rabbit under continuous wave CO2 laser irradiation: a transmission electron microscopy study.
    Dimitriu C
    J Electron Microsc (Tokyo); 1995 Dec; 44(6):467-70. PubMed ID: 8991924
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Microfibrillar components in dental pulp: presence of both type VI collagen- and fibrillin-containing microfibrils.
    Shuttleworth CA; Berry L; Kielty CM
    Arch Oral Biol; 1992 Dec; 37(12):1079-84. PubMed ID: 1471956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.