These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 24687331)
1. Evaluation of a new high-throughput next-generation sequencing method based on a custom AmpliSeq™ library and ion torrent PGM™ sequencing for the rapid detection of genetic variations in long QT syndrome. Millat G; Chanavat V; Rousson R Mol Diagn Ther; 2014 Oct; 18(5):533-9. PubMed ID: 24687331 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of a new NGS method based on a custom AmpliSeq library and Ion Torrent PGM sequencing for the fast detection of genetic variations in cardiomyopathies. Millat G; Chanavat V; Rousson R Clin Chim Acta; 2014 Jun; 433():266-71. PubMed ID: 24721642 [TBL] [Abstract][Full Text] [Related]
3. Development of a high resolution melting method for the detection of genetic variations in Long QT Syndrome. Millat G; Chanavat V; Créhalet H; Rousson R Clin Chim Acta; 2011 Jan; 412(1-2):203-7. PubMed ID: 20851114 [TBL] [Abstract][Full Text] [Related]
4. Considerations when using next-generation sequencing for genetic diagnosis of long-QT syndrome in the clinical testing laboratory. Chae H; Kim J; Lee GD; Jang W; Park J; Jekarl DW; Oh YS; Kim M; Kim Y Clin Chim Acta; 2017 Jan; 464():128-135. PubMed ID: 27871843 [TBL] [Abstract][Full Text] [Related]
5. Next-generation sequencing of human opioid receptor genes based on a custom AmpliSeq™ library and ion torrent personal genome machine. Kringel D; Lötsch J Clin Chim Acta; 2016 Dec; 463():32-38. PubMed ID: 27725223 [TBL] [Abstract][Full Text] [Related]
6. Targeted next generation sequencing application in cardiac channelopathies: Analysis of a cohort of autopsy-negative sudden unexplained deaths. Farrugia A; Keyser C; Hollard C; Raul JS; Muller J; Ludes B Forensic Sci Int; 2015 Sep; 254():5-11. PubMed ID: 26164358 [TBL] [Abstract][Full Text] [Related]
7. Inter-laboratory evaluation of SNP-based forensic identification by massively parallel sequencing using the Ion PGM™. Eduardoff M; Santos C; de la Puente M; Gross TE; Fondevila M; Strobl C; Sobrino B; Ballard D; Schneider PM; Carracedo Á; Lareu MV; Parson W; Phillips C Forensic Sci Int Genet; 2015 Jul; 17():110-121. PubMed ID: 25955683 [TBL] [Abstract][Full Text] [Related]
8. Next-generation sequencing of the human TRPV1 gene and the regulating co-players LTB4R and LTB4R2 based on a custom AmpliSeq™ panel. Kringel D; Sisignano M; Zinn S; Lötsch J PLoS One; 2017; 12(6):e0180116. PubMed ID: 28658281 [TBL] [Abstract][Full Text] [Related]
9. Fast clinical molecular diagnosis of hyperphenylalaninemia using next-generation sequencing-based on a custom AmpliSeq™ panel and Ion Torrent PGM sequencing. Cao YY; Qu YJ; Song F; Zhang T; Bai JL; Jin YW; Wang H Mol Genet Metab; 2014 Dec; 113(4):261-6. PubMed ID: 25456745 [TBL] [Abstract][Full Text] [Related]
10. A fast and cost-effective molecular diagnostic tool for genetic diseases involved in sudden cardiac death. Chanavat V; Janin A; Millat G Clin Chim Acta; 2016 Jan; 453():80-5. PubMed ID: 26688388 [TBL] [Abstract][Full Text] [Related]
11. Next generation sequencing of SNPs using the HID-Ion AmpliSeq™ Identity Panel on the Ion Torrent PGM™ platform. Guo F; Zhou Y; Song H; Zhao J; Shen H; Zhao B; Liu F; Jiang X Forensic Sci Int Genet; 2016 Nov; 25():73-84. PubMed ID: 27500651 [TBL] [Abstract][Full Text] [Related]
12. Validation of an NGS Approach for Diagnostic BRCA1/BRCA2 Mutation Testing. Dacheva D; Dodova R; Popov I; Goranova T; Mitkova A; Mitev V; Kaneva R Mol Diagn Ther; 2015 Apr; 19(2):119-30. PubMed ID: 25893891 [TBL] [Abstract][Full Text] [Related]
14. Long QT and Brugada syndrome gene mutations in New Zealand. Chung SK; MacCormick JM; McCulley CH; Crawford J; Eddy CA; Mitchell EA; Shelling AN; French JK; Skinner JR; Rees MI Heart Rhythm; 2007 Oct; 4(10):1306-14. PubMed ID: 17905336 [TBL] [Abstract][Full Text] [Related]
15. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Tester DJ; Will ML; Haglund CM; Ackerman MJ Heart Rhythm; 2005 May; 2(5):507-17. PubMed ID: 15840476 [TBL] [Abstract][Full Text] [Related]
16. Semiconductor Whole Exome Sequencing for the Identification of Genetic Variants in Colombian Patients Clinically Diagnosed with Long QT Syndrome. Burgos M; Arenas A; Cabrera R Mol Diagn Ther; 2016 Aug; 20(4):353-62. PubMed ID: 27251404 [TBL] [Abstract][Full Text] [Related]
17. Comparison of manual and automated AmpliSeq™ workflows in the typing of a Somali population with the Precision ID Identity Panel. van der Heijden S; de Oliveira SJ; Kampmann ML; Børsting C; Morling N Forensic Sci Int Genet; 2017 Nov; 31():118-125. PubMed ID: 28938152 [TBL] [Abstract][Full Text] [Related]
18. Targeted mutational analysis of ankyrin-B in 541 consecutive, unrelated patients referred for long QT syndrome genetic testing and 200 healthy subjects. Sherman J; Tester DJ; Ackerman MJ Heart Rhythm; 2005 Nov; 2(11):1218-23. PubMed ID: 16253912 [TBL] [Abstract][Full Text] [Related]
19. Mutation Analysis of KCNQ1, KCNH2 and SCN5A Genes in Taiwanese Long QT Syndrome Patients. Chang YS; Yang YW; Lin YN; Lin KH; Chang KC; Chang JG Int Heart J; 2015; 56(4):450-3. PubMed ID: 26118593 [TBL] [Abstract][Full Text] [Related]
20. Mutation analysis of candidate genes SCN1B, KCND3 and ANK2 in patients with clinical diagnosis of long QT syndrome. Raudenská M; Bittnerová A; Novotný T; Floriánová A; Chroust K; Gaillyová R; Semrád B; Kadlecová J; Šišáková M; Toman O; Spinar J Physiol Res; 2008; 57(6):857-862. PubMed ID: 18052691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]