BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24687436)

  • 1. Mathematical modelling reveals properties of TcdC required for it to be a negative regulator of toxin production in Clostridium difficile.
    Jabbari S; Cartman ST; King JR
    J Math Biol; 2015 Mar; 70(4):773-804. PubMed ID: 24687436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production.
    Merrigan M; Venugopal A; Mallozzi M; Roxas B; Viswanathan VK; Johnson S; Gerding DN; Vedantam G
    J Bacteriol; 2010 Oct; 192(19):4904-11. PubMed ID: 20675495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TcdC does not significantly repress toxin expression in Clostridium difficile 630ΔErm.
    Bakker D; Smits WK; Kuijper EJ; Corver J
    PLoS One; 2012; 7(8):e43247. PubMed ID: 22912837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates.
    Spigaglia P; Mastrantonio P
    J Clin Microbiol; 2002 Sep; 40(9):3470-5. PubMed ID: 12202595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production.
    Cartman ST; Kelly ML; Heeg D; Heap JT; Minton NP
    Appl Environ Microbiol; 2012 Jul; 78(13):4683-90. PubMed ID: 22522680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The anti-sigma factor TcdC modulates hypervirulence in an epidemic BI/NAP1/027 clinical isolate of Clostridium difficile.
    Carter GP; Douce GR; Govind R; Howarth PM; Mackin KE; Spencer J; Buckley AM; Antunes A; Kotsanas D; Jenkin GA; Dupuy B; Rood JI; Lyras D
    PLoS Pathog; 2011 Oct; 7(10):e1002317. PubMed ID: 22022270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clostridium difficile toxin synthesis is negatively regulated by TcdC.
    Dupuy B; Govind R; Antunes A; Matamouros S
    J Med Microbiol; 2008 Jun; 57(Pt 6):685-689. PubMed ID: 18480323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Truncation in the tcdC region of the Clostridium difficile PathLoc of clinical isolates does not predict increased biological activity of Toxin B or Toxin A.
    Murray R; Boyd D; Levett PN; Mulvey MR; Alfa MJ
    BMC Infect Dis; 2009 Jun; 9():103. PubMed ID: 19558711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The C-Terminal Domain of Clostridioides difficile TcdC Is Exposed on the Bacterial Cell Surface.
    Oliveira Paiva AM; de Jong L; Friggen AH; Smits WK; Corver J
    J Bacteriol; 2020 Oct; 202(22):. PubMed ID: 32868401
    [No Abstract]   [Full Text] [Related]  

  • 10. Evidence that Clostridium difficile TcdC is a membrane-associated protein.
    Govind R; Vediyappan G; Rolfe RD; Fralick JA
    J Bacteriol; 2006 May; 188(10):3716-20. PubMed ID: 16672625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RstA Is a Major Regulator of Clostridioides difficile Toxin Production and Motility.
    Edwards AN; Anjuwon-Foster BR; McBride SM
    mBio; 2019 Mar; 10(2):. PubMed ID: 30862746
    [No Abstract]   [Full Text] [Related]  

  • 12. Clostridium difficile toxin expression is inhibited by the novel regulator TcdC.
    Matamouros S; England P; Dupuy B
    Mol Microbiol; 2007 Jun; 64(5):1274-88. PubMed ID: 17542920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterization of pathogenicity locus (PaLoc) and tcdC genetic diversity among tcdA
    Kodori M; Ghalavand Z; Yadegar A; Eslami G; Azimirad M; Krutova M; Abadi A; Zali MR
    Anaerobe; 2020 Dec; 66():102294. PubMed ID: 33181348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The second messenger cyclic Di-GMP regulates Clostridium difficile toxin production by controlling expression of sigD.
    McKee RW; Mangalea MR; Purcell EB; Borchardt EK; Tamayo R
    J Bacteriol; 2013 Nov; 195(22):5174-85. PubMed ID: 24039264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppressive effect of Lactobacillus fermentum Lim2 on Clostridioides difficile 027 toxin production.
    Yong CC; Lim J; Kim BK; Park DJ; Oh S
    Lett Appl Microbiol; 2019 May; 68(5):386-393. PubMed ID: 30714187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Both, toxin A and toxin B, are important in Clostridium difficile infection.
    Kuehne SA; Cartman ST; Minton NP
    Gut Microbes; 2011; 2(4):252-5. PubMed ID: 21804353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spo0A differentially regulates toxin production in evolutionarily diverse strains of Clostridium difficile.
    Mackin KE; Carter GP; Howarth P; Rood JI; Lyras D
    PLoS One; 2013; 8(11):e79666. PubMed ID: 24236153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lack of association of tcdC type and binary toxin status with disease severity and outcome in toxigenic Clostridium difficile.
    Goldenberg SD; French GL
    J Infect; 2011 May; 62(5):355-62. PubMed ID: 21396957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe.
    Warny M; Pepin J; Fang A; Killgore G; Thompson A; Brazier J; Frost E; McDonald LC
    Lancet; 2005 Sep 24-30; 366(9491):1079-84. PubMed ID: 16182895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxin B is essential for virulence of Clostridium difficile.
    Lyras D; O'Connor JR; Howarth PM; Sambol SP; Carter GP; Phumoonna T; Poon R; Adams V; Vedantam G; Johnson S; Gerding DN; Rood JI
    Nature; 2009 Apr; 458(7242):1176-9. PubMed ID: 19252482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.