BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24687436)

  • 41. Prophage-stimulated toxin production in Clostridium difficile NAP1/027 lysogens.
    Sekulovic O; Meessen-Pinard M; Fortier LC
    J Bacteriol; 2011 Jun; 193(11):2726-34. PubMed ID: 21441508
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Toxin gene analysis of a variant strain of Clostridium difficile that causes human clinical disease.
    Sambol SP; Merrigan MM; Lyerly D; Gerding DN; Johnson S
    Infect Immun; 2000 Oct; 68(10):5480-7. PubMed ID: 10992443
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of Clostridioides difficile DSM 101085 with A-B-CDT+ Phenotype from a Late Recurrent Colonization.
    Riedel T; Neumann-Schaal M; Wittmann J; Schober I; Hofmann JD; Lu CW; Dannheim A; Zimmermann O; Lochner M; Groß U; Overmann J
    Genome Biol Evol; 2020 May; 12(5):566-577. PubMed ID: 32302381
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular analysis and genotyping of pathogenicity locus in Clostridioides difficile strains isolated from patients in Tehran hospitals during the years 2007-2010.
    Azimirad M; Azizi O; Alebouyeh M; Aslani MM; Mousavi SF; Zali MR
    Infect Genet Evol; 2019 Jul; 71():205-210. PubMed ID: 30902742
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation of Clostridioides difficile toxin production.
    Majumdar A; Govind R
    Curr Opin Microbiol; 2022 Feb; 65():95-100. PubMed ID: 34781095
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Epidemic ribotypes of Clostridium (now Clostridioides) difficile are likely to be more virulent than non-epidemic ribotypes in animal models.
    Vitucci JC; Pulse M; Tabor-Simecka L; Simecka J
    BMC Microbiol; 2020 Feb; 20(1):27. PubMed ID: 32024477
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modulation of toxin production by the flagellar regulon in Clostridium difficile.
    Aubry A; Hussack G; Chen W; KuoLee R; Twine SM; Fulton KM; Foote S; Carrillo CD; Tanha J; Logan SM
    Infect Immun; 2012 Oct; 80(10):3521-32. PubMed ID: 22851750
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nontoxigenic strains of Clostridium difficile lack the genes for both toxin A and toxin B.
    Fluit AC; Wolfhagen MJ; Verdonk GP; Jansze M; Torensma R; Verhoef J
    J Clin Microbiol; 1991 Nov; 29(11):2666-7. PubMed ID: 1774285
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rapid detection of the Clostridium difficile ribotype 027 tcdC gene frame shift mutation at position 117 by real-time PCR and melt curve analysis.
    Wolff D; Brüning T; Gerritzen A
    Eur J Clin Microbiol Infect Dis; 2009 Aug; 28(8):959-62. PubMed ID: 19333630
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rho factor mediates flagellum and toxin phase variation and impacts virulence in Clostridioides difficile.
    Trzilova D; Anjuwon-Foster BR; Torres Rivera D; Tamayo R
    PLoS Pathog; 2020 Aug; 16(8):e1008708. PubMed ID: 32785266
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The key sigma factor of transition phase, SigH, controls sporulation, metabolism, and virulence factor expression in Clostridium difficile.
    Saujet L; Monot M; Dupuy B; Soutourina O; Martin-Verstraete I
    J Bacteriol; 2011 Jul; 193(13):3186-96. PubMed ID: 21572003
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phylogenomics of 8,839 Clostridioides difficile genomes reveals recombination-driven evolution and diversification of toxin A and B.
    Mansfield MJ; Tremblay BJ; Zeng J; Wei X; Hodgins H; Worley J; Bry L; Dong M; Doxey AC
    PLoS Pathog; 2020 Dec; 16(12):e1009181. PubMed ID: 33370413
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Detection and elimination of a novel non-toxigenic
    Maslanka JR; Gu CH; Zarin I; Denny JE; Broadaway S; Fett B; Mattei LM; Walk ST; Abt MC
    Gut Microbes; 2020 Nov; 12(1):1-15. PubMed ID: 33305657
    [No Abstract]   [Full Text] [Related]  

  • 54. Increased toxin expression in a Clostridium difficile mfd mutant.
    Willing SE; Richards EJ; Sempere L; Dale AG; Cutting SM; Fairweather NF
    BMC Microbiol; 2015 Dec; 15():280. PubMed ID: 26679502
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of a novel virulence factor in Clostridium difficile that modulates toxin sensitivity of cultured epithelial cells.
    Miura M; Kato H; Matsushita O
    Infect Immun; 2011 Sep; 79(9):3810-20. PubMed ID: 21746858
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Repression of Clostridium difficile toxin gene expression by CodY.
    Dineen SS; Villapakkam AC; Nordman JT; Sonenshein AL
    Mol Microbiol; 2007 Oct; 66(1):206-19. PubMed ID: 17725558
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In vitro susceptibility of Clostridium difficile to rifaximin and rifampin in 359 consecutive isolates at a university hospital in Houston, Texas.
    Jiang ZD; DuPont HL; La Rocco M; Garey KW
    J Clin Pathol; 2010 Apr; 63(4):355-8. PubMed ID: 20354207
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Human intestinal enteroids as a model of
    Engevik MA; Danhof HA; Chang-Graham AL; Spinler JK; Engevik KA; Herrmann B; Endres BT; Garey KW; Hyser JM; Britton RA; Versalovic J
    Am J Physiol Gastrointest Liver Physiol; 2020 May; 318(5):G870-G888. PubMed ID: 32223302
    [No Abstract]   [Full Text] [Related]  

  • 59. Clostridium difficile in retail baskets, trolleys, conveyor belts, and plastic bags in Saudi Arabia.
    Alqumber MA
    Saudi Med J; 2014 Oct; 35(10):1274-7. PubMed ID: 25316477
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The complexity and diversity of the Pathogenicity Locus in Clostridium difficile clade 5.
    Elliott B; Dingle KE; Didelot X; Crook DW; Riley TV
    Genome Biol Evol; 2014 Nov; 6(12):3159-70. PubMed ID: 25381663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.