These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24687561)

  • 1. Covariance adjustment for batch effect in gene expression data.
    Lee JA; Dobbin KK; Ahn J
    Stat Med; 2014 Jul; 33(15):2681-95. PubMed ID: 24687561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removing batch effects from purified plasma cell gene expression microarrays with modified ComBat.
    Stein CK; Qu P; Epstein J; Buros A; Rosenthal A; Crowley J; Morgan G; Barlogie B
    BMC Bioinformatics; 2015 Feb; 16():63. PubMed ID: 25887219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covariance thresholding to detect differentially co-expressed genes from microarray gene expression data.
    Oh M; Kim K; Sun H
    J Bioinform Comput Biol; 2020 Feb; 18(1):2050002. PubMed ID: 32336254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Batch effect reduction of microarray data with dependent samples using an empirical Bayes approach (BRIDGE).
    Xia Q; Thompson JA; Koestler DC
    Stat Appl Genet Mol Biol; 2021 Dec; 20(4-6):101-119. PubMed ID: 34905304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods.
    Chen C; Grennan K; Badner J; Zhang D; Gershon E; Jin L; Liu C
    PLoS One; 2011 Feb; 6(2):e17238. PubMed ID: 21386892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blind estimation and correction of microarray batch effect.
    Varma S
    PLoS One; 2020; 15(4):e0231446. PubMed ID: 32271844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses.
    Nygaard V; Rødland EA; Hovig E
    Biostatistics; 2016 Jan; 17(1):29-39. PubMed ID: 26272994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adjusting batch effects in microarray expression data using empirical Bayes methods.
    Johnson WE; Li C; Rabinovic A
    Biostatistics; 2007 Jan; 8(1):118-27. PubMed ID: 16632515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rank-invariant resampling based estimation of false discovery rate for analysis of small sample microarray data.
    Jain N; Cho H; O'Connell M; Lee JK
    BMC Bioinformatics; 2005 Jul; 6():187. PubMed ID: 16042779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AMDBNorm: an approach based on distribution adjustment to eliminate batch effects of gene expression data.
    Zhang X; Ye Z; Chen J; Qiao F
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34958674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Borrowing information across genes and experiments for improved error variance estimation in microarray data analysis.
    Ji T; Liu P; Nettleton D
    Stat Appl Genet Mol Biol; 2012; 11(3):Article 12. PubMed ID: 22611597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust and sparse correlation matrix estimation for the analysis of high-dimensional genomics data.
    Serra A; Coretto P; Fratello M; Tagliaferri R; Stegle O
    Bioinformatics; 2018 Feb; 34(4):625-634. PubMed ID: 29040390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microarray-based RNA profiling of breast cancer: batch effect removal improves cross-platform consistency.
    Larsen MJ; Thomassen M; Tan Q; Sørensen KP; Kruse TA
    Biomed Res Int; 2014; 2014():651751. PubMed ID: 25101291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multivariate hierarchical Bayesian model for differential gene expression analysis in microarray experiments.
    Zhao H; Chan KL; Cheng LM; Yan H
    BMC Bioinformatics; 2008; 9 Suppl 1(Suppl 1):S9. PubMed ID: 18315862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporating prior knowledge of gene functional groups into regularized discriminant analysis of microarray data.
    Tai F; Pan W
    Bioinformatics; 2007 Dec; 23(23):3170-7. PubMed ID: 17933851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The practical effect of batch on genomic prediction.
    Parker HS; Leek JT
    Stat Appl Genet Mol Biol; 2012; 11(3):Article 10. PubMed ID: 22611599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correcting for intra-experiment variation in Illumina BeadChip data is necessary to generate robust gene-expression profiles.
    Kitchen RR; Sabine VS; Sims AH; Macaskill EJ; Renshaw L; Thomas JS; van Hemert JI; Dixon JM; Bartlett JM
    BMC Genomics; 2010 Feb; 11():134. PubMed ID: 20181233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correcting gene expression data when neither the unwanted variation nor the factor of interest are observed.
    Jacob L; Gagnon-Bartsch JA; Speed TP
    Biostatistics; 2016 Jan; 17(1):16-28. PubMed ID: 26286812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring multicollinearity using a random matrix theory approach.
    Feher K; Whelan J; Müller S
    Stat Appl Genet Mol Biol; 2012; 11(3):Article 15. PubMed ID: 22611593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using control genes to correct for unwanted variation in microarray data.
    Gagnon-Bartsch JA; Speed TP
    Biostatistics; 2012 Jul; 13(3):539-52. PubMed ID: 22101192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.