BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24687749)

  • 1. Role of surface residue 184 in the catalytic activity of NADH oxidase from Streptococcus pyogenes.
    Gao H; Tiwari MK; Singh RK; Sung BH; Kim SC; Lee JK
    Appl Microbiol Biotechnol; 2014 Aug; 98(16):7081-8. PubMed ID: 24687749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of H2O-forming NADH oxidase from Streptococcus pyogenes and its application in l-rare sugar production.
    Gao H; Tiwari MK; Kang YC; Lee JK
    Bioorg Med Chem Lett; 2012 Mar; 22(5):1931-5. PubMed ID: 22326164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of cysteine 337 and cysteine 340 in flavoprotein that functions as NADH oxidase from Amphibacillus xylanus studied by site-directed mutagenesis.
    Ohnishi K; Niimura Y; Hidaka M; Masaki H; Suzuki H; Uozumi T; Nishino T
    J Biol Chem; 1995 Mar; 270(11):5812-7. PubMed ID: 7726998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning, expression, characterization and homology modeling of a novel water-forming NADH oxidase from Streptococcus mutans ATCC 25175.
    Li FL; Shi Y; Zhang JX; Gao J; Zhang YW
    Int J Biol Macromol; 2018 Jul; 113():1073-1079. PubMed ID: 29514042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal pH shift of the NADH oxidase from Lactobacillus rhamnosus with a single mutation.
    Zhou Q; Gao J; Zhang YW
    Biotechnol Lett; 2021 Jul; 43(7):1413-1420. PubMed ID: 33844097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Analysis of Streptococcus pyogenes NADH Oxidase: Conformational Dynamics Involved in Formation of the C(4a)-Peroxyflavin Intermediate.
    Wallen JR; Mallett TC; Okuno T; Parsonage D; Sakai H; Tsukihara T; Claiborne A
    Biochemistry; 2015 Nov; 54(45):6815-29. PubMed ID: 26506002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The crystal structure of NAD(P)H oxidase from Lactobacillus sanfranciscensis: insights into the conversion of O2 into two water molecules by the flavoenzyme.
    Lountos GT; Jiang R; Wellborn WB; Thaler TL; Bommarius AS; Orville AM
    Biochemistry; 2006 Aug; 45(32):9648-59. PubMed ID: 16893166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of introduced surface cysteine of NADH oxidase from Lactobacillus rhamnosus.
    Li FL; Tao QL; Liu CY; Gao J; Zhang YW
    Int J Biol Macromol; 2019 Jul; 132():150-156. PubMed ID: 30926492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A flavoprotein functional as NADH oxidase from Amphibacillus xylanus Ep01: purification and characterization of the enzyme and structural analysis of its gene.
    Niimura Y; Ohnishi K; Yarita Y; Hidaka M; Masaki H; Uchimura T; Suzuki H; Kozaki M; Uozumi T
    J Bacteriol; 1993 Dec; 175(24):7945-50. PubMed ID: 8253683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and characterization of thermostable H2O2-forming NADH oxidase from 2-phenylethanol-assimilating Brevibacterium sp. KU1309.
    Hirano J; Miyamoto K; Ohta H
    Appl Microbiol Biotechnol; 2008 Aug; 80(1):71-8. PubMed ID: 18521590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Equilibrium analyses of the active-site asymmetry in enterococcal NADH oxidase: role of the cysteine-sulfenic acid redox center.
    Mallett TC; Parsonage D; Claiborne A
    Biochemistry; 1999 Mar; 38(10):3000-11. PubMed ID: 10074352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of ferredoxin or oxygen by flavin-based electron bifurcation in Megasphaera elsdenii.
    Chowdhury NP; Kahnt J; Buckel W
    FEBS J; 2015 Aug; 282(16):3149-60. PubMed ID: 25903584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of alkyl hydroperoxide reductase and two water-forming NADH oxidases from Bacillus cereus ATCC 14579.
    Wang L; Chong H; Jiang R
    Appl Microbiol Biotechnol; 2012 Dec; 96(5):1265-73. PubMed ID: 22311647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of an NADH oxidase from extremely thermophilic anaerobic bacterium Thermotoga hypogea.
    Yang X; Ma K
    Arch Microbiol; 2005 Aug; 183(5):331-7. PubMed ID: 15912375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADH oxidase activity of mitochondrial apoptosis-inducing factor.
    Miramar MD; Costantini P; Ravagnan L; Saraiva LM; Haouzi D; Brothers G; Penninger JM; Peleato ML; Kroemer G; Susin SA
    J Biol Chem; 2001 May; 276(19):16391-8. PubMed ID: 11278689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assimilatory nitrate reductase: lysine 741 participates in pyridine nucleotide binding via charge complementarity.
    Barber MJ; Desai SK; Marohnic CC
    Arch Biochem Biophys; 2001 Oct; 394(1):99-110. PubMed ID: 11566032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen reactivity of an NADH oxidase C42S mutant: evidence for a C(4a)-peroxyflavin intermediate and a rate-limiting conformational change.
    Mallett TC; Claiborne A
    Biochemistry; 1998 Jun; 37(24):8790-802. PubMed ID: 9628741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterization of NADH oxidase from Serpulina (Treponema) hyodysenteriae.
    Stanton TB; Jensen NS
    J Bacteriol; 1993 May; 175(10):2980-7. PubMed ID: 8491717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational plasticity surrounding the active site of NADH oxidase from Thermus thermophilus.
    Miletti T; Di Trani J; Levros LC; Mittermaier A
    Protein Sci; 2015 Jul; 24(7):1114-28. PubMed ID: 25970557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of a water-forming NADH oxidase from Methanobrevibacter smithii, an archaeon in the human gut.
    Yan M; Yin W; Fang X; Guo J; Shi H
    Biosci Rep; 2016 Dec; 36(6):. PubMed ID: 27737924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.