These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 2468777)

  • 1. Charybdotoxin blocks with high affinity the Ca-activated K+ channel of Hb A and Hb S red cells: individual differences in the number of channels.
    Wolff D; Cecchi X; Spalvins A; Canessa M
    J Membr Biol; 1988 Dec; 106(3):243-52. PubMed ID: 2468777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Red blood cells of a transgenic mouse expressing high levels of human hemoglobin S exhibit deoxy-stimulated cation flux.
    Romero JR; Fabry ME; Suzuka S; Nagel RL; Canessa M
    J Membr Biol; 1997 Oct; 159(3):187-96. PubMed ID: 9312208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-activated potassium channels in resting and activated human T lymphocytes. Expression levels, calcium dependence, ion selectivity, and pharmacology.
    Grissmer S; Nguyen AN; Cahalan MD
    J Gen Physiol; 1993 Oct; 102(4):601-30. PubMed ID: 7505804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-independent cell volume regulation in human lymphocytes. Inhibition by charybdotoxin.
    Grinstein S; Smith JD
    J Gen Physiol; 1990 Jan; 95(1):97-120. PubMed ID: 1688915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2.
    Jäger H; Grissmer S
    Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charybdotoxin-sensitive K(Ca) channel is not involved in glucose-induced electrical activity in pancreatic beta-cells.
    Kukuljan M; Goncalves AA; Atwater I
    J Membr Biol; 1991 Jan; 119(2):187-95. PubMed ID: 1710672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charybdotoxin blocks voltage-gated K+ channels in human and murine T lymphocytes.
    Sands SB; Lewis RS; Cahalan MD
    J Gen Physiol; 1989 Jun; 93(6):1061-74. PubMed ID: 2475579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basolateral K+ channels in airway epithelia. I. Regulation by Ca2+ and block by charybdotoxin.
    McCann JD; Matsuda J; Garcia M; Kaczorowski G; Welsh MJ
    Am J Physiol; 1990 Jun; 258(6 Pt 1):L334-42. PubMed ID: 1694404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca(2+)-activated K+ channels in human leukemic T cells.
    Grissmer S; Lewis RS; Cahalan MD
    J Gen Physiol; 1992 Jan; 99(1):63-84. PubMed ID: 1371308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charybdotoxin block of single Ca2+-activated K+ channels. Effects of channel gating, voltage, and ionic strength.
    Anderson CS; MacKinnon R; Smith C; Miller C
    J Gen Physiol; 1988 Mar; 91(3):317-33. PubMed ID: 2454282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly co-operative Ca2+ activation of intermediate-conductance K+ channels in granulocytes from a human cell line.
    Varnai P; Demaurex N; Jaconi M; Schlegel W; Lew DP; Krause KH
    J Physiol; 1993 Dec; 472():373-90. PubMed ID: 7511688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A charybdotoxin-insensitive conductance in human T lymphocytes: T cell membrane potential is set by distinct K+ channels.
    Verheugen JA; Korn H
    J Physiol; 1997 Sep; 503 ( Pt 2)(Pt 2):317-31. PubMed ID: 9306275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charybdotoxin block of Shaker K+ channels suggests that different types of K+ channels share common structural features.
    MacKinnon R; Reinhart PH; White MM
    Neuron; 1988 Dec; 1(10):997-1001. PubMed ID: 2483094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Ca(2+)-activated 86Rb+ fluxes in rat C6 glioma cells: a system for identifying novel IKCa-channel toxins.
    de-Allie FA; Bolsover SR; Nowicky AV; Strong PN
    Br J Pharmacol; 1996 Feb; 117(3):479-487. PubMed ID: 8821537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkaline pH and internal calcium increase Na+ and K+ effluxes in LK sheep red blood cells in Cl--free solutions.
    Ortiz-Carranza O; Miller ME; Adragna NC; Lauf PK
    J Membr Biol; 1997 Apr; 156(3):287-95. PubMed ID: 9096069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W7) stimulation of K+ transport in a human salivary epithelial cell line.
    Patton L; Ship J; Wellner R
    Biochem Pharmacol; 1991 Aug; 42(5):1039-44. PubMed ID: 1714731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+ induces charybdotoxin-sensitive membrane potential changes in rat lymphocytes.
    Grinstein S; Smith JD
    Am J Physiol; 1989 Aug; 257(2 Pt 1):C197-206. PubMed ID: 2475027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single channel study of a Ca(2+)-activated K+ current associated with ras-induced cell transformation.
    Huang Y; Rane SG
    J Physiol; 1993 Feb; 461():601-18. PubMed ID: 7688809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of charybdotoxin block of the high-conductance, Ca2+-activated K+ channel.
    MacKinnon R; Miller C
    J Gen Physiol; 1988 Mar; 91(3):335-49. PubMed ID: 2454283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presence of a charybdotoxin sensitive Ca2+-activated K+ channel in rat glioma C6 cells.
    Tas PW; Kress HG; Koschel K
    Neurosci Lett; 1988 Dec; 94(3):279-84. PubMed ID: 2462699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.