BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 24687876)

  • 1. Kv7.2 regulates the function of peripheral sensory neurons.
    King CH; Lancaster E; Salomon D; Peles E; Scherer SS
    J Comp Neurol; 2014 Oct; 522(14):3262-80. PubMed ID: 24687876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of KCNQ2 gene truncation on M-type Kv7 potassium currents.
    Robbins J; Passmore GM; Abogadie FC; Reilly JM; Brown DA
    PLoS One; 2013; 8(8):e71809. PubMed ID: 23977150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tannic acid modulates excitability of sensory neurons and nociceptive behavior and the Ionic mechanism.
    Zhang X; Zhang H; Zhou N; Xu J; Si M; Jia Z; Du X; Zhang H
    Eur J Pharmacol; 2015 Oct; 764():633-642. PubMed ID: 26134502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of KCNQ/M (Kv7) potassium channels in dorsal root ganglion neurons contributes to the development of bone cancer pain in a rat model.
    Zheng Q; Fang D; Liu M; Cai J; Wan Y; Han JS; Xing GG
    Pain; 2013 Mar; 154(3):434-448. PubMed ID: 23352759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional repression of the M channel subunit Kv7.2 in chronic nerve injury.
    Rose K; Ooi L; Dalle C; Robertson B; Wood IC; Gamper N
    Pain; 2011 Apr; 152(4):742-754. PubMed ID: 21345591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KCNQ2/3/5 channels in dorsal root ganglion neurons can be therapeutic targets of neuropathic pain in diabetic rats.
    Yu T; Li L; Liu H; Li H; Liu Z; Li Z
    Mol Pain; 2018; 14():1744806918793229. PubMed ID: 30027794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conditional deletions of epilepsy-associated KCNQ2 and KCNQ3 channels from cerebral cortex cause differential effects on neuronal excitability.
    Soh H; Pant R; LoTurco JJ; Tzingounis AV
    J Neurosci; 2014 Apr; 34(15):5311-21. PubMed ID: 24719109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heteromeric Assembly of Truncated Neuronal Kv7 Channels: Implications for Neurologic Disease and Pharmacotherapy.
    Li J; Maghera J; Lamothe SM; Marco EJ; Kurata HT
    Mol Pharmacol; 2020 Sep; 98(3):192-202. PubMed ID: 32580997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Kv7.2/Kv7.3 and M
    Kreir M; De Bondt A; Van den Wyngaert I; Teuns G; Lu HR; Gallacher DJ
    Eur J Pharmacol; 2019 Sep; 858():172474. PubMed ID: 31238068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TMEM16C facilitates Na(+)-activated K+ currents in rat sensory neurons and regulates pain processing.
    Huang F; Wang X; Ostertag EM; Nuwal T; Huang B; Jan YN; Basbaum AI; Jan LY
    Nat Neurosci; 2013 Sep; 16(9):1284-90. PubMed ID: 23872594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attenuating M-current suppression in vivo by a mutant Kcnq2 gene knock-in reduces seizure burden and prevents status epilepticus-induced neuronal death and epileptogenesis.
    Greene DL; Kosenko A; Hoshi N
    Epilepsia; 2018 Oct; 59(10):1908-1918. PubMed ID: 30146722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pore residue of the KCNQ3 potassium M-channel subunit controls surface expression.
    Gómez-Posada JC; Etxeberría A; Roura-Ferrer M; Areso P; Masin M; Murrell-Lagnado RD; Villarroel A
    J Neurosci; 2010 Jul; 30(27):9316-23. PubMed ID: 20610766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Amyloid Precursor Protein C99 Fragment Modulates Voltage-Gated Potassium Channels.
    Manville RW; Abbott GW
    Cell Physiol Biochem; 2021 Jul; 55(S3):157-170. PubMed ID: 34318654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological and pharmacological characterization of a novel and potent neuronal Kv7 channel opener SCR2682 for antiepilepsy.
    Zhang F; Liu Y; Tang F; Liang B; Chen H; Zhang H; Wang K
    FASEB J; 2019 Aug; 33(8):9154-9166. PubMed ID: 31063701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The KCNQ2/3 selective channel opener ICA-27243 binds to a novel voltage-sensor domain site.
    Padilla K; Wickenden AD; Gerlach AC; McCormack K
    Neurosci Lett; 2009 Nov; 465(2):138-42. PubMed ID: 19733209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FGF14 is a regulator of KCNQ2/3 channels.
    Pablo JL; Pitt GS
    Proc Natl Acad Sci U S A; 2017 Jan; 114(1):154-159. PubMed ID: 27994149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of KV7/KCNQ potassium channel enhances neuronal differentiation of PC12 cells.
    Zhou N; Huang S; Li L; Huang D; Yan Y; Du X; Zhang H
    Neuroscience; 2016 Oct; 333():356-67. PubMed ID: 27450567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KCNQ Potassium Channels Modulate Sensitivity of Skin Down-hair (D-hair) Mechanoreceptors.
    Schütze S; Orozco IJ; Jentsch TJ
    J Biol Chem; 2016 Mar; 291(11):5566-5575. PubMed ID: 26733196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Made for "anchorin": Kv7.2/7.3 (KCNQ2/KCNQ3) channels and the modulation of neuronal excitability in vertebrate axons.
    Cooper EC
    Semin Cell Dev Biol; 2011 Apr; 22(2):185-92. PubMed ID: 20940059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calmodulin orchestrates the heteromeric assembly and the trafficking of KCNQ2/3 (Kv7.2/3) channels in neurons.
    Liu W; Devaux JJ
    Mol Cell Neurosci; 2014 Jan; 58():40-52. PubMed ID: 24333508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.