These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 24688256)
1. Reproducibility of peripapillary retinal nerve fiber layer thickness measured by spectral domain optical coherence tomography in pseudophakic eyes. Kim GA; Kim JH; Lee JM; Park KS Korean J Ophthalmol; 2014 Apr; 28(2):138-49. PubMed ID: 24688256 [TBL] [Abstract][Full Text] [Related]
2. Effect of signal strength on reproducibility of circumpapillary retinal nerve fiber layer thickness measurement and its classification by spectral-domain optical coherence tomography. Kim JH; Kim NR; Kim H; Lee ES; Seong GJ; Kim CY Jpn J Ophthalmol; 2011 May; 55(3):220-227. PubMed ID: 21559911 [TBL] [Abstract][Full Text] [Related]
3. Comparison of retinal nerve fiber layer measurement between 2 spectral domain OCT instruments. Tan BB; Natividad M; Chua KC; Yip LW J Glaucoma; 2012; 21(4):266-73. PubMed ID: 21637116 [TBL] [Abstract][Full Text] [Related]
4. Comparison of retinal nerve fiber layer measurements using time domain and spectral domain optical coherent tomography. Knight OJ; Chang RT; Feuer WJ; Budenz DL Ophthalmology; 2009 Jul; 116(7):1271-7. PubMed ID: 19395086 [TBL] [Abstract][Full Text] [Related]
5. Effect of signal strength on reproducibility of peripapillary retinal nerve fiber layer thickness measurement and its classification by time-domain optical coherence tomography. Lee ES; Kim H; Kim JM Jpn J Ophthalmol; 2010 Sep; 54(5):414-22. PubMed ID: 21052903 [TBL] [Abstract][Full Text] [Related]
6. Comparison of the influence of cataract and pupil size on retinal nerve fibre layer thickness measurements with time-domain and spectral-domain optical coherence tomography. Cheng CS; Natividad MG; Earnest A; Yong V; Lim BA; Wong HT; Yip LW Clin Exp Ophthalmol; 2011 Apr; 39(3):215-21. PubMed ID: 21070544 [TBL] [Abstract][Full Text] [Related]
7. Reproducibility of peripapillary retinal nerve fiber layer thickness with spectral domain cirrus high-definition optical coherence tomography in normal eyes. Hong S; Kim CY; Lee WS; Seong GJ Jpn J Ophthalmol; 2010 Jan; 54(1):43-7. PubMed ID: 20151275 [TBL] [Abstract][Full Text] [Related]
8. Ability of cirrus high-definition spectral-domain optical coherence tomography clock-hour, deviation, and thickness maps in detecting photographic retinal nerve fiber layer abnormalities. Hwang YH; Kim YY; Kim HK; Sohn YH Ophthalmology; 2013 Jul; 120(7):1380-7. PubMed ID: 23541761 [TBL] [Abstract][Full Text] [Related]
9. Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with cirrus HD-OCT in glaucomatous eyes. Mwanza JC; Chang RT; Budenz DL; Durbin MK; Gendy MG; Shi W; Feuer WJ Invest Ophthalmol Vis Sci; 2010 Nov; 51(11):5724-30. PubMed ID: 20574014 [TBL] [Abstract][Full Text] [Related]
10. Cirrus HD-OCT short-term repeatability of clinical retinal nerve fiber layer measurements. Wong E; Yoshioka N; Kalloniatis M; Zangerl B Optom Vis Sci; 2015 Jan; 92(1):83-8. PubMed ID: 25479451 [TBL] [Abstract][Full Text] [Related]
11. Comparison of retinal nerve fiber layer thickness measured by Cirrus HD and Stratus optical coherence tomography. Sung KR; Kim DY; Park SB; Kook MS Ophthalmology; 2009 Jul; 116(7):1264-70, 1270.e1. PubMed ID: 19427696 [TBL] [Abstract][Full Text] [Related]
12. Glaucoma diagnostic ability of quadrant and clock-hour neuroretinal rim assessment using cirrus HD optical coherence tomography. Hwang YH; Kim YY Invest Ophthalmol Vis Sci; 2012 Apr; 53(4):2226-34. PubMed ID: 22410556 [TBL] [Abstract][Full Text] [Related]
13. Repeatability of peripapillary retinal nerve fiber layer and inner retinal thickness among two spectral domain optical coherence tomography devices. Matlach J; Wagner M; Malzahn U; Göbel W Invest Ophthalmol Vis Sci; 2014 Sep; 55(10):6536-46. PubMed ID: 25228545 [TBL] [Abstract][Full Text] [Related]
14. Comparative evaluation of time domain and spectral domain optical coherence tomography in retinal nerve fiber layer thickness measurements. Angmo D; Bhartiya S; Mishra SK; Sharma R; Poojari A; Dada T Nepal J Ophthalmol; 2014; 6(2):185-91. PubMed ID: 25680249 [TBL] [Abstract][Full Text] [Related]
15. Reproducibility of retinal nerve fiber layer measurements across the glaucoma spectrum using optical coherence tomography. Vazirani J; Kaushik S; Pandav SS; Gupta P Indian J Ophthalmol; 2015 Apr; 63(4):300-5. PubMed ID: 26044467 [TBL] [Abstract][Full Text] [Related]
16. Ganglion cell-inner plexiform layer and retinal nerve fiber layer thickness according to myopia and optic disc area: a quantitative and three-dimensional analysis. Seo S; Lee CE; Jeong JH; Park KH; Kim DM; Jeoung JW BMC Ophthalmol; 2017 Mar; 17(1):22. PubMed ID: 28283025 [TBL] [Abstract][Full Text] [Related]
17. Quantitative assessment of retinal nerve fiber layer defect depth using spectral-domain optical coherence tomography. Suh MH; Yoo BW; Kim JY; Choi YJ; Park KH; Kim HC Ophthalmology; 2014 Jul; 121(7):1333-40. PubMed ID: 24612980 [TBL] [Abstract][Full Text] [Related]
18. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Leung CK; Cheung CY; Weinreb RN; Qiu Q; Liu S; Li H; Xu G; Fan N; Huang L; Pang CP; Lam DS Ophthalmology; 2009 Jul; 116(7):1257-63, 1263.e1-2. PubMed ID: 19464061 [TBL] [Abstract][Full Text] [Related]
19. Inter-device agreement of retinal nerve fiber layer thickness measurements using spectral domain cirrus HD OCT. Hong S; Kim Y; Shim J; Kim CY; Seong GJ Korean J Ophthalmol; 2011 Apr; 25(2):105-9. PubMed ID: 21461222 [TBL] [Abstract][Full Text] [Related]
20. Effect of signal strength on agreements for retinal nerve fiber layer thickness measurement and its color code classification between Stratus and Cirrus optical coherence tomography. Lee ES; Kim NR; Seong GJ; Hong S; Kim CY J Glaucoma; 2011 Aug; 20(6):371-6. PubMed ID: 21048516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]