These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24688478)

  • 1. Interconnected growing self-organizing maps for auditory and semantic acquisition modeling.
    Cao M; Li A; Fang Q; Kaufmann E; Kröger BJ
    Front Psychol; 2014; 5():236. PubMed ID: 24688478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of an Action Repository as Part of a Biologically Inspired Model of Speech Processing: The Role of Somatosensory Information in Learning Phonetic-Phonological Sound Features.
    Kröger BJ; Bafna T; Cao M
    Front Psychol; 2019; 10():1462. PubMed ID: 31354560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early lexical development in a self-organizing neural network.
    Li P; Farkas I; MacWhinney B
    Neural Netw; 2004; 17(8-9):1345-62. PubMed ID: 15555870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growing a hypercubical output space in a self-organizing feature map.
    Bauer HU; Villmann T
    IEEE Trans Neural Netw; 1997; 8(2):218-26. PubMed ID: 18255626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contextual self-organizing map: software for constructing semantic representations.
    Zhao X; Li P; Kohonen T
    Behav Res Methods; 2011 Mar; 43(1):77-88. PubMed ID: 21287105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic self-organizing maps with controlled growth for knowledge discovery.
    Alahakoon D; Halgamuge SK; Srinivasan B
    IEEE Trans Neural Netw; 2000; 11(3):601-14. PubMed ID: 18249788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Granular Self-Organizing Map for Clustering and Gene Selection in Microarray Data.
    Ray SS; Ganivada A; Pal SK
    IEEE Trans Neural Netw Learn Syst; 2016 Sep; 27(9):1890-906. PubMed ID: 26285222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Neurobiologically Constrained Cortex Model of Semantic Grounding With Spiking Neurons and Brain-Like Connectivity.
    Tomasello R; Garagnani M; Wennekers T; Pulvermüller F
    Front Comput Neurosci; 2018; 12():88. PubMed ID: 30459584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phonetic acquisition in cortical dynamics, a computational approach.
    Dematties D; Rizzi S; Thiruvathukal GK; Wainselboim A; Zanutto BS
    PLoS One; 2019; 14(6):e0217966. PubMed ID: 31173613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generative Adversarial Phonology: Modeling Unsupervised Phonetic and Phonological Learning With Neural Networks.
    Beguš G
    Front Artif Intell; 2020; 3():44. PubMed ID: 33733161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. More Than the Eye Can See: A Computational Model of Color Term Acquisition and Color Discrimination.
    Beekhuizen B; Stevenson S
    Cogn Sci; 2018 Nov; 42(8):2699-2734. PubMed ID: 30079497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binning sequences using very sparse labels within a metagenome.
    Chan CK; Hsu AL; Halgamuge SK; Tang SL
    BMC Bioinformatics; 2008 Apr; 9():215. PubMed ID: 18442374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delta, theta, beta, and gamma brain oscillations index levels of auditory sentence processing.
    Mai G; Minett JW; Wang WS
    Neuroimage; 2016 Jun; 133():516-528. PubMed ID: 26931813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semantics guide infants' vowel learning: Computational and experimental evidence.
    Ter Schure SM; Junge CM; Boersma PP
    Infant Behav Dev; 2016 May; 43():44-57. PubMed ID: 27130954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meaning in the avian auditory cortex: neural representation of communication calls.
    Elie JE; Theunissen FE
    Eur J Neurosci; 2015 Mar; 41(5):546-67. PubMed ID: 25728175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lifelong Learning of Spatiotemporal Representations With Dual-Memory Recurrent Self-Organization.
    Parisi GI; Tani J; Weber C; Wermter S
    Front Neurorobot; 2018; 12():78. PubMed ID: 30546302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semantic Context Enhances the Early Auditory Encoding of Natural Speech.
    Broderick MP; Anderson AJ; Lalor EC
    J Neurosci; 2019 Sep; 39(38):7564-7575. PubMed ID: 31371424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redundancy in perceptual and linguistic experience: comparing feature-based and distributional models of semantic representation.
    Riordan B; Jones MN
    Top Cogn Sci; 2011 Apr; 3(2):303-45. PubMed ID: 25164298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory-motor interactions in pediatric motor speech disorders: neurocomputational modeling of disordered development.
    Terband H; Maassen B; Guenther FH; Brumberg J
    J Commun Disord; 2014; 47():17-33. PubMed ID: 24491630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From bird to sparrow: Learning-induced modulations in fine-grained semantic discrimination.
    De Meo R; Bourquin NM; Knebel JF; Murray MM; Clarke S
    Neuroimage; 2015 Sep; 118():163-73. PubMed ID: 26070264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.