These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24688892)

  • 21. Computational studies on the reactivity of alkyl halides over (Al2O3)n nanoclusters: an approach towards room temperature dehydrohalogenation.
    Biswas S; Pramanik A; Sarkar P
    Nanoscale; 2016 May; 8(19):10205-18. PubMed ID: 27124271
    [TBL] [Abstract][Full Text] [Related]  

  • 22. OH-Initiated Reactions of
    Hudzik JM; Barekati-Goudarzi M; Khachatryan L; Bozzelli JW; Ruckenstein E; Asatryan R
    J Phys Chem A; 2020 Jun; 124(24):4875-4904. PubMed ID: 32432475
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical study on the identity ion pair SN2 reactions of LiX with CH3SX (X=Cl, Br, and I): structure, mechanism, and potential energy surface.
    Ren Y; Gai JG; Xiong Y; Lee KH; Chu SY
    J Phys Chem A; 2007 Jul; 111(29):6615-21. PubMed ID: 17388388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elucidation of the vicarious nucleophilic substitution of hydrogen mechanism via studies of competition between substitution of hydrogen, deuterium, and fluorine.
    Makosza M; Lemek T; Kwast A; Terrier F
    J Org Chem; 2002 Jan; 67(2):394-400. PubMed ID: 11798309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activation Strain Analysis of S
    Kubelka J; Bickelhaupt FM
    J Phys Chem A; 2017 Feb; 121(4):885-891. PubMed ID: 28045531
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of atomic-level mechanisms for gas-phase X- + CH3Y SN2 reactions by combined experiments and simulations.
    Xie J; Otto R; Mikosch J; Zhang J; Wester R; Hase WL
    Acc Chem Res; 2014 Oct; 47(10):2960-9. PubMed ID: 25120237
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Resolving Entangled Reactivity Modes through External Electric Fields and Substitution: Application to E
    Stuyver T; Shaik S
    J Org Chem; 2021 Jul; 86(13):9030-9039. PubMed ID: 34152765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ambident Nucleophilic Substitution: Understanding Non-HSAB Behavior through Activation Strain and Conceptual DFT Analyses.
    Bettens T; Alonso M; De Proft F; Hamlin TA; Bickelhaupt FM
    Chemistry; 2020 Mar; 26(17):3884-3893. PubMed ID: 31957943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rate-determining factors in nucleophilic aromatic substitution reactions.
    Fernández I; Frenking G; Uggerud E
    J Org Chem; 2010 May; 75(9):2971-80. PubMed ID: 20353177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Asymmetric Nucleophilic Allylation of α-Chloro Glycinate via Squaramide Anion-Abstraction Catalysis: S
    Zhu L; Yang H; Wong MW
    J Org Chem; 2021 Jun; 86(12):8414-8424. PubMed ID: 34081471
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemoselective nucleophilic fluorination induced by selective solvation of the SN2 transition state.
    Pliego JR; Piló-Veloso D
    J Phys Chem B; 2007 Feb; 111(7):1752-8. PubMed ID: 17266358
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nucleophilic identity substitution reactions. The reaction between hydrogen fluoride and protonated alkyl fluorides.
    Laerdahl JK; Civcir PU; Bache-Andreassen L; Uggerud E
    Org Biomol Chem; 2006 Jan; 4(1):135-41. PubMed ID: 16358008
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How alkyl halide structure affects E2 and SN2 reaction barriers: E2 reactions are as sensitive as SN2 reactions.
    Rablen PR; McLarney BD; Karlow BJ; Schneider JE
    J Org Chem; 2014 Feb; 79(3):867-79. PubMed ID: 24437451
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Competition between nucleophilic substitution of halogen (SN Ar) versus substitution of hydrogen (SN ArH)-a mass spectrometry and computational study.
    Błaziak K; Mąkosza M; Danikiewicz W
    Chemistry; 2015 Apr; 21(16):6048-51. PubMed ID: 25765013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nucleophilic substitution at phosphorus centers (SN2@p).
    van Bochove MA; Swart M; Bickelhaupt FM
    Chemphyschem; 2007 Dec; 8(17):2452-63. PubMed ID: 17990249
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Radical mechanism of a nucleophilic reaction depending on a two-dimensional structure.
    Lai W; Yuan Y; Wang X; Liu Y; Li Y; Liu X
    Phys Chem Chem Phys; 2017 Dec; 20(1):489-497. PubMed ID: 29214274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activation Strain Analyses of Counterion and Solvent Effects on the Ion-Pair S
    Savoo N; Laloo JZA; Rhyman L; Ramasami P; Bickelhaupt FM; Poater J
    J Comput Chem; 2020 Feb; 41(4):317-327. PubMed ID: 31713259
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trends in alkyl substituent effects on nucleophilic reactions of carbonyl compounds: gas phase reactions between amines and the methoxy methyl cation.
    Bache-Andreassen L; Uggerud E
    Eur J Mass Spectrom (Chichester); 2004; 10(2):233-8. PubMed ID: 15103101
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Substituent Effects on the Reactivity of Cyclic Tertiary Sulfamidates.
    Navo CD; Mazo N; Avenoza A; Busto JH; Peregrina JM; Jiménez-Osés G
    J Org Chem; 2017 Dec; 82(24):13250-13255. PubMed ID: 29148752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New Mechanism Proposed for the Base-Catalyzed Urea⁻Formaldehyde Condensation Reactions: A Theoretical Study.
    Li T; Cao M; Liang J; Xie X; Du G
    Polymers (Basel); 2017 Jun; 9(6):. PubMed ID: 30970883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.