BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

577 related articles for article (PubMed ID: 24689032)

  • 1. Hydrogel scaffolds for tissue engineering: Progress and challenges.
    El-Sherbiny IM; Yacoub MH
    Glob Cardiol Sci Pract; 2013; 2013(3):316-42. PubMed ID: 24689032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue regeneration properties of hydrogels derived from biological macromolecules: A review.
    Kesharwani P; Alexander A; Shukla R; Jain S; Bisht A; Kumari K; Verma K; Sharma S
    Int J Biol Macromol; 2024 Jun; 271(Pt 2):132280. PubMed ID: 38744364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.
    Naahidi S; Jafari M; Logan M; Wang Y; Yuan Y; Bae H; Dixon B; Chen P
    Biotechnol Adv; 2017 Sep; 35(5):530-544. PubMed ID: 28558979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling the porosity and microarchitecture of hydrogels for tissue engineering.
    Annabi N; Nichol JW; Zhong X; Ji C; Koshy S; Khademhosseini A; Dehghani F
    Tissue Eng Part B Rev; 2010 Aug; 16(4):371-83. PubMed ID: 20121414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame.
    Song K; Li L; Li W; Zhu Y; Jiao Z; Lim M; Fang M; Shi F; Wang L; Liu T
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():384-92. PubMed ID: 26117769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modifying decellularized aortic valve scaffolds with stromal cell-derived factor-1α loaded proteolytically degradable hydrogel for recellularization and remodeling.
    Dai J; Qiao W; Shi J; Liu C; Hu X; Dong N
    Acta Biomater; 2019 Apr; 88():280-292. PubMed ID: 30721783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microsphere-containing Hydrogel Scaffolds for Tissue Engineering.
    Zhang S; Lin A; Tao Z; Fu Y; Xiao L; Ruan G; Li Y
    Chem Asian J; 2022 Oct; 17(20):e202200630. PubMed ID: 35909078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymeric Hydrogel Scaffolds: Skin Tissue Engineering and Regeneration.
    Uppuluri VNVA; Thukani Sathanantham S; Bhimavarapu SK; Elumalai L
    Adv Pharm Bull; 2022 May; 12(3):437-448. PubMed ID: 35935050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructured degradable macroporous hydrogel scaffolds with controllable internal morphologies via reactive electrospinning.
    Xu F; Gough I; Dorogin J; Sheardown H; Hoare T
    Acta Biomater; 2020 Mar; 104():135-146. PubMed ID: 31904560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intact vitreous humor as a potential extracellular matrix hydrogel for cartilage tissue engineering applications.
    Lindberg GCJ; Longoni A; Lim KS; Rosenberg AJ; Hooper GJ; Gawlitta D; Woodfield TBF
    Acta Biomater; 2019 Feb; 85():117-130. PubMed ID: 30572166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferritin Nanocage Conjugated Hybrid Hydrogel for Tissue Engineering and Drug Delivery Applications.
    Samanipour R; Wang T; Werb M; Hassannezhad H; Rangel JML; Hoorfar M; Hasan A; Lee CK; Shin SR
    ACS Biomater Sci Eng; 2020 Jan; 6(1):277-287. PubMed ID: 33313389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and development of artificial osteochondral constructs based on cancellous bone/hydrogel hybrid scaffold.
    Song K; Li L; Yan X; Zhang Y; Li R; Wang Y; Wang L; Wang H; Liu T
    J Mater Sci Mater Med; 2016 Jun; 27(6):114. PubMed ID: 27180235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying.
    Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D
    Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.
    Wu S; Duan B; Qin X; Butcher JT
    Acta Biomater; 2017 Mar; 51():89-100. PubMed ID: 28110071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A facile method to fabricate hydrogels with microchannel-like porosity for tissue engineering.
    Hammer J; Han LH; Tong X; Yang F
    Tissue Eng Part C Methods; 2014 Feb; 20(2):169-76. PubMed ID: 23745610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues.
    Manoukian OS; Matta R; Letendre J; Collins P; Mazzocca AD; Kumbar SG
    Methods Mol Biol; 2017; 1570():261-278. PubMed ID: 28238143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly (ethylene glycol) hydrogel scaffolds with multiscale porosity for culture of human adipose-derived stem cells.
    Barnett HH; Heimbuck AM; Pursell I; Hegab RA; Sawyer BJ; Newman JJ; Caldorera-Moore ME
    J Biomater Sci Polym Ed; 2019 Aug; 30(11):895-918. PubMed ID: 31039085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable Hybrid Biopolymeric Hydrogel Scaffolds Based on Atomic Force Microscopy Characterizations for Tissue Engineering.
    Li M; Xi N; Wang Y; Liu L
    IEEE Trans Nanobioscience; 2019 Oct; 18(4):597-610. PubMed ID: 31217123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A soft 3D polyacrylate hydrogel recapitulates the cartilage niche and allows growth-factor free tissue engineering of human articular cartilage.
    Jiménez G; Venkateswaran S; López-Ruiz E; Perán M; Pernagallo S; Díaz-Monchón JJ; Canadas RF; Antich C; Oliveira JM; Callanan A; Walllace R; Reis RL; Montañez E; Carrillo E; Bradley M; Marchal JA
    Acta Biomater; 2019 May; 90():146-156. PubMed ID: 30910621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in the design of macroporous polymer scaffolds for potential applications in dentistry.
    Bencherif SA; Braschler TM; Renaud P
    J Periodontal Implant Sci; 2013 Dec; 43(6):251-61. PubMed ID: 24455437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.