BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

569 related articles for article (PubMed ID: 24689032)

  • 21. Self assembled temperature responsive surfaces for generation of cell patches for bone tissue engineering.
    Valmikinathan CM; Chang W; Xu J; Yu X
    Biofabrication; 2012 Sep; 4(3):035006. PubMed ID: 22914662
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application.
    Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X
    Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Granular Cellulose Nanofibril Hydrogel Scaffolds for 3D Cell Cultivation.
    Gehlen DB; Jürgens N; Omidinia-Anarkoli A; Haraszti T; George J; Walther A; Ye H; De Laporte L
    Macromol Rapid Commun; 2020 Sep; 41(18):e2000191. PubMed ID: 32783361
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation.
    Wang L; Wu Y; Hu T; Ma PX; Guo B
    Acta Biomater; 2019 Sep; 96():175-187. PubMed ID: 31260823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering.
    Billiet T; Vandenhaute M; Schelfhout J; Van Vlierberghe S; Dubruel P
    Biomaterials; 2012 Sep; 33(26):6020-41. PubMed ID: 22681979
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic tissue engineering scaffolds with stimuli-responsive macroporosity formation.
    Han LH; Lai JH; Yu S; Yang F
    Biomaterials; 2013 Jun; 34(17):4251-8. PubMed ID: 23489920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hyperbranched poly(glycidol)/poly(ethylene oxide) crosslinked hydrogel for tissue engineering scaffold using e-beams.
    Haryanto ; Singh D; Huh PH; Kim SC
    J Biomed Mater Res A; 2016 Jan; 104(1):48-56. PubMed ID: 26148840
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glucuronoxylan-based quince seed hydrogel: A promising scaffold for tissue engineering applications.
    Guzelgulgen M; Ozkendir-Inanc D; Yildiz UH; Arslan-Yildiz A
    Int J Biol Macromol; 2021 Jun; 180():729-738. PubMed ID: 33757854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration.
    Celikkin N; Mastrogiacomo S; Jaroszewicz J; Walboomers XF; Swieszkowski W
    J Biomed Mater Res A; 2018 Jan; 106(1):201-209. PubMed ID: 28884519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Macroporous Hydrogel Scaffolds for Three-Dimensional Cell Culture and Tissue Engineering.
    Fan C; Wang DA
    Tissue Eng Part B Rev; 2017 Oct; 23(5):451-461. PubMed ID: 28067115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of 3D porous galactose containing PVA/gelatin hydrogel scaffolds on three-dimensional spheroidal morphology of hepatocytes.
    Vasanthan KS; Subramaniam A; Krishnan UM; Sethuraman S
    J Mater Sci Mater Med; 2015 Jan; 26(1):5345. PubMed ID: 25578699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Construction of Injectable Self-Healing Macroporous Hydrogels via a Template-Free Method for Tissue Engineering and Drug Delivery.
    Wang L; Deng F; Wang W; Li A; Lu C; Chen H; Wu G; Nan K; Li L
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36721-36732. PubMed ID: 30261143
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydroxypropyl Cellulose/Pluronic-Based Composite Hydrogels as Biodegradable Mucoadhesive Scaffolds for Tissue Engineering.
    Filip D; Macocinschi D; Zaltariov MF; Ciubotaru BI; Bargan A; Varganici CD; Vasiliu AL; Peptanariu D; Balan-Porcarasu M; Timofte-Zorila MM
    Gels; 2022 Aug; 8(8):. PubMed ID: 36005120
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A review of fibrin and fibrin composites for bone tissue engineering.
    Noori A; Ashrafi SJ; Vaez-Ghaemi R; Hatamian-Zaremi A; Webster TJ
    Int J Nanomedicine; 2017; 12():4937-4961. PubMed ID: 28761338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modular microporous hydrogels formed from microgel beads with orthogonal thermo-chemical responsivity: Microfluidic fabrication and characterization.
    Sheikhi A; de Rutte J; Haghniaz R; Akouissi O; Sohrabi A; Di Carlo D; Khademhosseini A
    MethodsX; 2019; 6():1747-1752. PubMed ID: 31413947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enzymatic Formation of an Injectable Hydrogel from a Glycopeptide as a Biomimetic Scaffold for Vascularization.
    Qi J; Yan Y; Cheng B; Deng L; Shao Z; Sun Z; Li X
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6180-6189. PubMed ID: 29380599
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of nanocellulose scaffolds with tunable structures to support 3D cell culture.
    Liu J; Cheng F; Grénman H; Spoljaric S; Seppälä J; E Eriksson J; Willför S; Xu C
    Carbohydr Polym; 2016 Sep; 148():259-71. PubMed ID: 27185139
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Directed assembly of cell-laden hydrogels for engineering functional tissues.
    Kachouie NN; Du Y; Bae H; Khabiry M; Ahari AF; Zamanian B; Fukuda J; Khademhosseini A
    Organogenesis; 2010; 6(4):234-44. PubMed ID: 21220962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.