These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 24689550)
1. Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. Ling D; Park W; Park SJ; Lu Y; Kim KS; Hackett MJ; Kim BH; Yim H; Jeon YS; Na K; Hyeon T J Am Chem Soc; 2014 Apr; 136(15):5647-55. PubMed ID: 24689550 [TBL] [Abstract][Full Text] [Related]
2. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Ling D; Lee N; Hyeon T Acc Chem Res; 2015 May; 48(5):1276-85. PubMed ID: 25922976 [TBL] [Abstract][Full Text] [Related]
3. Cell-specific and pH-activatable rubyrin-loaded nanoparticles for highly selective near-infrared photodynamic therapy against cancer. Tian J; Ding L; Xu HJ; Shen Z; Ju H; Jia L; Bao L; Yu JS J Am Chem Soc; 2013 Dec; 135(50):18850-8. PubMed ID: 24294991 [TBL] [Abstract][Full Text] [Related]
4. Dual activatable self-assembled nanotheranostics for bioimaging and photodynamic therapy. Fu Y; Jang MS; Wang N; Li Y; Wu TP; Lee JH; Lee DS; Yang HY J Control Release; 2020 Nov; 327():129-139. PubMed ID: 32771476 [TBL] [Abstract][Full Text] [Related]
5. Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy. Kim KS; Kim J; Lee JY; Matsuda S; Hideshima S; Mori Y; Osaka T; Na K Nanoscale; 2016 Jun; 8(22):11625-34. PubMed ID: 27217004 [TBL] [Abstract][Full Text] [Related]
6. Dynamically Reversible Iron Oxide Nanoparticle Assemblies for Targeted Amplification of T1-Weighted Magnetic Resonance Imaging of Tumors. Li F; Liang Z; Liu J; Sun J; Hu X; Zhao M; Liu J; Bai R; Kim D; Sun X; Hyeon T; Ling D Nano Lett; 2019 Jul; 19(7):4213-4220. PubMed ID: 30719918 [TBL] [Abstract][Full Text] [Related]
7. Responsive Assembly of Upconversion Nanoparticles for pH-Activated and Near-Infrared-Triggered Photodynamic Therapy of Deep Tumors. Li F; Du Y; Liu J; Sun H; Wang J; Li R; Kim D; Hyeon T; Ling D Adv Mater; 2018 Aug; 30(35):e1802808. PubMed ID: 29999559 [TBL] [Abstract][Full Text] [Related]
8. Development of pH sensitive 2-(diisopropylamino)ethyl methacrylate based nanoparticles for photodynamic therapy. Peng CL; Yang LY; Luo TY; Lai PS; Yang SJ; Lin WJ; Shieh MJ Nanotechnology; 2010 Apr; 21(15):155103. PubMed ID: 20332561 [TBL] [Abstract][Full Text] [Related]
9. Novel water-soluble and pH-responsive anticancer drug nanocarriers: doxorubicin-PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs). Chang Y; Meng X; Zhao Y; Li K; Zhao B; Zhu M; Li Y; Chen X; Wang J J Colloid Interface Sci; 2011 Nov; 363(1):403-9. PubMed ID: 21821262 [TBL] [Abstract][Full Text] [Related]
10. Multifunctional core–shell silica nanoparticles for highly sensitive (19)F magnetic resonance imaging. Matsushita H; Mizukami S; Sugihara F; Nakanishi Y; Yoshioka Y; Kikuchi K Angew Chem Int Ed Engl; 2014 Jan; 53(4):1008-11. PubMed ID: 24446255 [TBL] [Abstract][Full Text] [Related]
11. Self-assembled peptide nanoparticles as tumor microenvironment activatable probes for tumor targeting and imaging. Zhao Y; Ji T; Wang H; Li S; Zhao Y; Nie G J Control Release; 2014 Mar; 177():11-9. PubMed ID: 24417969 [TBL] [Abstract][Full Text] [Related]
12. pH-sensitive drug-delivery systems for tumor targeting. He X; Li J; An S; Jiang C Ther Deliv; 2013 Dec; 4(12):1499-510. PubMed ID: 24304248 [TBL] [Abstract][Full Text] [Related]
13. Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior. Liu X; Chen Y; Li H; Huang N; Jin Q; Ren K; Ji J ACS Nano; 2013 Jul; 7(7):6244-57. PubMed ID: 23799860 [TBL] [Abstract][Full Text] [Related]
14. The potential of self-assembled, pH-responsive nanoparticles of mPEGylated peptide dendron-doxorubicin conjugates for cancer therapy. She W; Luo K; Zhang C; Wang G; Geng Y; Li L; He B; Gu Z Biomaterials; 2013 Feb; 34(5):1613-23. PubMed ID: 23195490 [TBL] [Abstract][Full Text] [Related]
15. Surface charge switching nanoparticles for magnetic resonance imaging. Lee DJ; Oh YT; Lee ES Int J Pharm; 2014 Aug; 471(1-2):127-34. PubMed ID: 24858382 [TBL] [Abstract][Full Text] [Related]
16. Multifunctional drug delivery system for targeting tumor and its acidic microenvironment. Shen M; Huang Y; Han L; Qin J; Fang X; Wang J; Yang VC J Control Release; 2012 Aug; 161(3):884-92. PubMed ID: 22587941 [TBL] [Abstract][Full Text] [Related]
17. Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging. Yang X; Grailer JJ; Rowland IJ; Javadi A; Hurley SA; Matson VZ; Steeber DA; Gong S ACS Nano; 2010 Nov; 4(11):6805-17. PubMed ID: 20958084 [TBL] [Abstract][Full Text] [Related]
18. Tumor extracellular acidity-activated nanoparticles as drug delivery systems for enhanced cancer therapy. Du JZ; Mao CQ; Yuan YY; Yang XZ; Wang J Biotechnol Adv; 2014; 32(4):789-803. PubMed ID: 23933109 [TBL] [Abstract][Full Text] [Related]
19. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Ge Z; Liu S Chem Soc Rev; 2013 Sep; 42(17):7289-325. PubMed ID: 23549663 [TBL] [Abstract][Full Text] [Related]
20. A fullerene-based multi-functional nanoplatform for cancer theranostic applications. Shi J; Wang L; Gao J; Liu Y; Zhang J; Ma R; Liu R; Zhang Z Biomaterials; 2014 Jul; 35(22):5771-84. PubMed ID: 24746227 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]