These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 24689598)

  • 1. A multi-axis confocal rheoscope for studying shear flow of structured fluids.
    Lin NY; McCoy JH; Cheng X; Leahy B; Israelachvili JN; Cohen I
    Rev Sci Instrum; 2014 Mar; 85(3):033905. PubMed ID: 24689598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biaxial shear of confined colloidal hard spheres: the structure and rheology of the vorticity-aligned string phase.
    Lin NY; Cheng X; Cohen I
    Soft Matter; 2014 Mar; 10(12):1969-76. PubMed ID: 24652388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative imaging of colloidal flows.
    Besseling R; Isa L; Weeks ER; Poon WC
    Adv Colloid Interface Sci; 2009 Feb; 146(1-2):1-17. PubMed ID: 19012873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new parallel plate shear cell for in situ real-space measurements of complex fluids under shear flow.
    Wu YL; Brand JH; van Gemert JL; Verkerk J; Wisman H; van Blaaderen A; Imhof A
    Rev Sci Instrum; 2007 Oct; 78(10):103902. PubMed ID: 17979430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel rheo-optical device for studying complex fluids in a double shear plate geometry.
    Boitte JB; Vizcaïno C; Benyahia L; Herry JM; Michon C; Hayert M
    Rev Sci Instrum; 2013 Jan; 84(1):013709. PubMed ID: 23387661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sliding plate microgap rheometer for the simultaneous measurement of shear stress and first normal stress difference.
    Baik SJ; Moldenaers P; Clasen C
    Rev Sci Instrum; 2011 Mar; 82(3):035121. PubMed ID: 21456802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions.
    Cheng X; McCoy JH; Israelachvili JN; Cohen I
    Science; 2011 Sep; 333(6047):1276-9. PubMed ID: 21885778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of cell density and biomacromolecule addition on the flow behavior of concentrated mesenchymal cell suspensions.
    Maisonneuve BG; Roux DC; Thorn P; Cooper-White JJ
    Biomacromolecules; 2013 Dec; 14(12):4388-97. PubMed ID: 24255972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregation behavior of latex particles in shear flow confined between two parallel plates.
    Kikuchi Y; Yamada H; Kunimori H; Tsukada T; Hozawa M; Yokoyama C; Kubo M
    Langmuir; 2005 Apr; 21(8):3273-8. PubMed ID: 15807564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Portable magnetic tweezers device enables visualization of the three-dimensional microscale deformation of soft biological materials.
    Yang Y; Lin J; Meschewski R; Watson E; Valentine MT
    Biotechniques; 2011 Jul; 51(1):29-34. PubMed ID: 21781050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical coherence tomography velocimetry of colloidal suspensions.
    Malm AV; Harrison AW; Waigh TA
    Soft Matter; 2014 Nov; 10(41):8210-5. PubMed ID: 25181574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional imaging of colloidal glasses under steady shear.
    Besseling R; Weeks ER; Schofield AB; Poon WC
    Phys Rev Lett; 2007 Jul; 99(2):028301. PubMed ID: 17678265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new instrument for dynamic helical squeeze flow which superposes oscillatory shear and oscillatory squeeze flow.
    Kim JH; Ahn KH
    Rev Sci Instrum; 2012 Aug; 83(8):085105. PubMed ID: 22938330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slip, yield, and bands in colloidal crystals under oscillatory shear.
    Cohen I; Davidovitch B; Schofield AB; Brenner MP; Weitz DA
    Phys Rev Lett; 2006 Nov; 97(21):215502. PubMed ID: 17155747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of electrorheological fluids under an electric field and a shear flow: experiment and computer simulation.
    Cao JG; Huang JP; Zhou LW
    J Phys Chem B; 2006 Jun; 110(24):11635-9. PubMed ID: 16800457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Note: real time three-dimensional topography measurement of microfluidic devices with pillar structures using confocal microscope.
    Ang KT; Fang ZP; Tay A
    Rev Sci Instrum; 2014 Feb; 85(2):026108. PubMed ID: 24593408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Live en face imaging of aortic valve leaflets under mechanical stress.
    Metzler SA; Digesu CS; Howard JI; Filip To SD; Warnock JN
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):355-61. PubMed ID: 21604147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV.
    Kinoshita H; Kaneda S; Fujii T; Oshima M
    Lab Chip; 2007 Mar; 7(3):338-46. PubMed ID: 17330165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction forces between red cells agglutinated by antibody. IV. Time and force dependence of break-up.
    Tees DF; Coenen O; Goldsmith HL
    Biophys J; 1993 Sep; 65(3):1318-34. PubMed ID: 8241411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a biaxial compression device for biological samples: preliminary experimental results for a closed cell foam.
    Little JP; Tevelen G; Adam CJ; Evans JH; Pearcy MJ
    J Mech Behav Biomed Mater; 2009 Jul; 2(3):305-9. PubMed ID: 19627835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.