These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24689615)

  • 1. Experimental study of a low-thrust measurement system for thruster ground tests.
    Gong J; Hou L; Zhao W
    Rev Sci Instrum; 2014 Mar; 85(3):035102. PubMed ID: 24689615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a two-dimensional dual pendulum thrust stand for Hall thrusters.
    Nagao N; Yokota S; Komurasaki K; Arakawa Y
    Rev Sci Instrum; 2007 Nov; 78(11):115108. PubMed ID: 18052505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a cantilever beam thrust stand for electric propulsion thrusters.
    Zhang H; Li DT; Li H
    Rev Sci Instrum; 2020 Nov; 91(11):115104. PubMed ID: 33261444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thrust stand for vertically oriented electric propulsion performance evaluation.
    Moeller T; Polzin KA
    Rev Sci Instrum; 2010 Nov; 81(11):115108. PubMed ID: 21133502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-power, null-type, inverted pendulum thrust stand.
    Xu KG; Walker ML
    Rev Sci Instrum; 2009 May; 80(5):055103. PubMed ID: 19485530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A torsion balance for impulse and thrust measurements of micro-Newton thrusters.
    Yang YX; Tu LC; Yang SQ; Luo J
    Rev Sci Instrum; 2012 Jan; 83(1):015105. PubMed ID: 22299984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thrust stand based on a single point load cell for impulse measurements from plasma thrusters.
    Conde L; Lahoz MD; Grabulosa J; Hernández R; González J; Delgado M; Damba J
    Rev Sci Instrum; 2020 Feb; 91(2):023308. PubMed ID: 32113423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanobalance: an automated interferometric balance for micro-thrust measurement.
    Canuto E; Rolino A
    ISA Trans; 2004 Apr; 43(2):169-87. PubMed ID: 15098578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-millinewton thrust stand and wireless power coupler for microwave-powered small satellite thrusters.
    Wachs BN; Jorns BA
    Rev Sci Instrum; 2022 Aug; 93(8):083507. PubMed ID: 36050119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization, Test and Diagnostics of Miniaturized Hall Thrusters.
    Lim JWM; Levchenko I; Rohaizat MWAB; Huang S; Xu L; Sun YF; Potrivitu GC; Yee JS; Sim RZW; Wang Y; Levchenko S; Bazaka K; Xu S
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30829319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of inverted pendulum thrust stand with spring-shaped wire for high power electric thrusters.
    Yamasaki J; Nonaka M; Yokota S; Shimamura K
    Rev Sci Instrum; 2023 Mar; 94(3):034501. PubMed ID: 37012807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the dynamic performance of a thrust stand for small-thrust liquid-pulsed thrusters.
    Xing Q; Li T; Zhang J; Ren ZJ
    Rev Sci Instrum; 2019 Jun; 90(6):065113. PubMed ID: 31254981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A compound pendulum for thrust measurement of micro-Newton thruster.
    Xu H; Gao Y; Mao QB; Ye LW; Hu ZK; Zhang K; Song P; Li Q
    Rev Sci Instrum; 2022 Jun; 93(6):064501. PubMed ID: 35778050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of plasma noise on a direct thrust measurement system.
    Pottinger SJ; Lamprou D; Knoll AK; Lappas VJ
    Rev Sci Instrum; 2012 Mar; 83(3):033504. PubMed ID: 22462919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic Analysis-Based Modeling and Experimental Verification of a New Water-Jet Thruster for an Amphibious Spherical Robot.
    Hou X; Guo S; Shi L; Xing H; Liu Y; Liu H; Hu Y; Xia D; Li Z
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 10 nN resolution thrust-stand for micro-propulsion devices.
    Chakraborty S; Courtney DG; Shea H
    Rev Sci Instrum; 2015 Nov; 86(11):115109. PubMed ID: 26628174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a torsional balance for thrust measurements of Hall effect and microwave-based space propulsion systems.
    Masillo S; Stubbing J; Swar K; Staab D; Garbayo A; Lucca Fabris A
    Rev Sci Instrum; 2022 Nov; 93(11):114501. PubMed ID: 36461544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interlaboratory validation of a hanging pendulum thrust balance for electric propulsion testing.
    Schwertheim A; Rosati Azevedo E; Liu G; Bosch Borràs E; Bianchi L; Knoll A
    Rev Sci Instrum; 2021 Mar; 92(3):034502. PubMed ID: 33820057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thirty percent conversion efficiency from radiofrequency power to thrust energy in a magnetic nozzle plasma thruster.
    Takahashi K
    Sci Rep; 2022 Nov; 12(1):18618. PubMed ID: 36357485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High precision micro-impulse measurements for micro-thrusters based on torsional pendulum and sympathetic resonance techniques.
    Zhang D; Wu J; Zhang R; Zhang H; He Z
    Rev Sci Instrum; 2013 Dec; 84(12):125113. PubMed ID: 24387474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.