These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24689781)

  • 1. Metalloenzyme-mimicking supramolecular catalyst for highly active and selective intramolecular alkyne carboxylation.
    Lee LC; Zhao Y
    J Am Chem Soc; 2014 Apr; 136(15):5579-82. PubMed ID: 24689781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing enzyme-like catalysts: a rhodium(II) metallopeptide case study.
    Ball ZT
    Acc Chem Res; 2013 Feb; 46(2):560-70. PubMed ID: 23210518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cycloaddition reactivity studies of first-row transition metal-azide complexes and alkynes: an inorganic click reaction for metalloenzyme inhibitor synthesis.
    Evangelio E; Rath NP; Mirica LM
    Dalton Trans; 2012 Jul; 41(26):8010-21. PubMed ID: 22517535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts?
    Reetz MT
    Acc Chem Res; 2019 Feb; 52(2):336-344. PubMed ID: 30689339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A metal ion regulated artificial metalloenzyme.
    Bersellini M; Roelfes G
    Dalton Trans; 2017 Mar; 46(13):4325-4330. PubMed ID: 28281708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aldol reaction catalyzed by a hydrophilic catalyst in aqueous micelle as an enzyme mimic system.
    Zhang H; Zhao W; Zou J; Liu Y; Li R; Cui Y
    Chirality; 2009 May; 21(5):492-6. PubMed ID: 18655166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.
    Wulff G; Liu J
    Acc Chem Res; 2012 Feb; 45(2):239-47. PubMed ID: 21967389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward chemistry-based design of the simplest metalloenzyme-like catalyst that works efficiently in water.
    Kitanosono T; Kobayashi S
    Chem Asian J; 2015 Jan; 10(1):133-8. PubMed ID: 25349140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metalloenzyme inspired dizinc catalyst for the polymerization of lactide.
    Williams CK; Brooks NR; Hillmyer MA; Tolman WB
    Chem Commun (Camb); 2002 Sep; (18):2132-3. PubMed ID: 12357810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective alkyne hydrogenation over nano-metal systems: closing the gap between model and real catalysts for industrial applications.
    Cárdenas-Lizana F; Crespo-Quesada M; Kiwi-Minsker L
    Chimia (Aarau); 2012; 66(9):681-6. PubMed ID: 23211726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overriding the alkynophilicity of gold: catalytic pathways from higher energy Au(I)-substrate complexes and reactant deactivation via unproductive complexation in the gold(I)-catalyzed propargyl Claisen rearrangement.
    Vidhani DV; Cran JW; Krafft ME; Alabugin IV
    Org Biomol Chem; 2013 Feb; 11(10):1624-30. PubMed ID: 23307145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and nuclearity of active sites in Fe-zeolites: comparison with iron sites in enzymes and homogeneous catalysts.
    Zecchina A; Rivallan M; Berlier G; Lamberti C; Ricchiardi G
    Phys Chem Chem Phys; 2007 Jul; 9(27):3483-99. PubMed ID: 17612716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metallopeptide catalysts and artificial metalloenzymes containing unnatural amino acids.
    Lewis JC
    Curr Opin Chem Biol; 2015 Apr; 25():27-35. PubMed ID: 25545848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoporous gold catalyst for highly selective semihydrogenation of alkynes: remarkable effect of amine additives.
    Yan M; Jin T; Ishikawa Y; Minato T; Fujita T; Chen LY; Bao M; Asao N; Chen MW; Yamamoto Y
    J Am Chem Soc; 2012 Oct; 134(42):17536-42. PubMed ID: 23020313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metalloenzyme-inspired catalysis: selective oxidation of primary alcohols with an iridium-aminyl-radical complex.
    Königsmann M; Donati N; Stein D; Schönberg H; Harmer J; Sreekanth A; Grützmacher H
    Angew Chem Int Ed Engl; 2007; 46(19):3567-70. PubMed ID: 17397021
    [No Abstract]   [Full Text] [Related]  

  • 17. Off-the-shelf proteins that rival tailor-made antibodies as catalysts.
    Hollfelder F; Kirby AJ; Tawfik DS
    Nature; 1996 Sep; 383(6595):60-2. PubMed ID: 8779715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multicore Artificial Metalloenzymes Derived from Acylated Proteins as Catalysts for the Enantioselective Dihydroxylation and Epoxidation of Styrene Derivatives.
    Leurs M; Dorn B; Wilhelm S; Manisegaran M; Tiller JC
    Chemistry; 2018 Jul; 24(42):10859-10867. PubMed ID: 29808506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development of catalytic nucleophilic additions of terminal alkynes in water.
    Li CJ
    Acc Chem Res; 2010 Apr; 43(4):581-90. PubMed ID: 20095650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cationic gold(I)-mediated intramolecular cyclization of 3-alkyne-1,2-diols and 1-amino-3-alkyn-2-ols: a practical route to furans and pyrroles.
    Egi M; Azechi K; Akai S
    Org Lett; 2009 Nov; 11(21):5002-5. PubMed ID: 19780532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.