These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24689829)

  • 1. Suppression of degradation induced by negative gate bias and illumination stress in amorphous InGaZnO thin-film transistors by applying negative drain bias.
    Wang D; Hung MP; Jiang J; Toda T; Furuta M
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5713-8. PubMed ID: 24689829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the photoleakage current and photoinduced negative bias instability in amorphous InGaZnO thin-film transistors with various active layer thicknesses.
    Wang D; Furuta M
    Beilstein J Nanotechnol; 2018; 9():2573-2580. PubMed ID: 30425903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steep Subthreshold Swing and Enhanced Illumination Stability InGaZnO Thin-Film Transistor by Plasma Oxidation on Silicon Nitride Gate Dielectric.
    Liu Y; Liu C; Qin H; Peng C; Lu M; Chen Z; Zhao Y
    Membranes (Basel); 2021 Nov; 11(11):. PubMed ID: 34832130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photobias instability of high performance solution processed amorphous zinc tin oxide transistors.
    Kim YJ; Yang BS; Oh S; Han SJ; Lee HW; Heo J; Jeong JK; Kim HJ
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3255-61. PubMed ID: 23540523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of annealing-induced instabilities of photo-leakage current and negative-bias-illumination-stress in a-InGaZnO thin-film transistors.
    Wang D; Furuta M
    Beilstein J Nanotechnol; 2019; 10():1125-1130. PubMed ID: 33614381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drain Current Stress-Induced Instability in Amorphous InGaZnO Thin-Film Transistors with Different Active Layer Thicknesses.
    Wang D; Zhao W; Li H; Furuta M
    Materials (Basel); 2018 Apr; 11(4):. PubMed ID: 29621154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Threshold Voltage Shift for Full V
    Kim JH; Jang JT; Bae JH; Choi SJ; Kim DM; Kim C; Kim Y; Kim DH
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33808738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Oxygen Content on Current Stress-Induced Instability in Bottom-Gate Amorphous InGaZnO Thin-Film Transistors.
    Choi S; Kim JY; Kang H; Ko D; Rhee J; Choi SJ; Kim DM; Kim DH
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31561545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of
    Prasad OK; Mohanty SK; Wu CH; Yu TY; Chang KM
    Nanotechnology; 2021 Jul; 32(39):. PubMed ID: 34144544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical Performance and Bias-Stress Stability of Amorphous InGaZnO Thin-Film Transistors with Buried-Channel Layers.
    Zhang Y; Xie H; Dong C
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31739504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the electrode materials on the drain-bias stress instabilities of In-Ga-Zn-O thin-film transistors.
    Bak JY; Yang S; Ryu MK; Ko Park SH; Hwang CS; Yoon SM
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5369-74. PubMed ID: 22974265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-Ideal Top-Gate Controllability of InGaZnO Thin-Film Transistors by Suppressing Interface Defects with an Ultrathin Atomic Layer Deposited Gate Insulator.
    Li J; Zhang Y; Wang J; Yang H; Zhou X; Chan M; Wang X; Lu L; Zhang S
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):8666-8675. PubMed ID: 36709447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Light Stability of InGaZnO Thin-Film Transistors by Atomic-Layer-Deposited Y
    Jung H; Kim WH; Park BE; Woo WJ; Oh IK; Lee SJ; Kim YC; Myoung JM; Gatineau S; Dussarrat C; Kim H
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):2143-2150. PubMed ID: 29277990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Investigation of Gate Pulse Induced Degradation in a-InGaZnO Thin Film Transistors.
    Kim BJ; Seo JH; Choe H; Jeon JH
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7559-63. PubMed ID: 26726371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Doping Nitrogen in InGaZnO Thin Film Transistor with Double Layer Channel Structure.
    Chang SP; Shan D
    J Nanosci Nanotechnol; 2018 Apr; 18(4):2493-2497. PubMed ID: 29442918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave annealing effect for highly reliable biosensor: dual-gate ion-sensitive field-effect transistor using amorphous InGaZnO thin-film transistor.
    Lee IK; Lee KH; Lee S; Cho WJ
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22680-6. PubMed ID: 25456792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Passivation Layers on Positive Gate Bias-Stress Stability of Amorphous InGaZnO Thin-Film Transistors.
    Zhou Y; Dong C
    Micromachines (Basel); 2018 Nov; 9(11):. PubMed ID: 30453615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Simple Doping Process Achieved by Modifying the Passivation Layer for Self-Aligned Top-Gate In-Ga-Zn-O Thin-Film Transistors at 200 °C.
    Peng C; Huang H; Xu M; Chen L; Li X; Zhang J
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graded Channel Junctionless InGaZnO Thin-Film Transistors with Both High Transporting Properties and Good Bias Stress Stability.
    Liu J; Guo J; Yang W; Wang C; Yuan B; Liu J; Wu Z; Zhang Q; Liu D; Chen H; Yu Y; Liu S; Shao G; Yao Z
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43950-43957. PubMed ID: 32886486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trap-Assisted Enhanced Bias Illumination Stability of Oxide Thin Film Transistor by Praseodymium Doping.
    Xu H; Xu M; Li M; Chen Z; Zou J; Wu W; Qiao X; Tao H; Wang L; Ning H; Ma D; Peng J
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5232-5239. PubMed ID: 30640426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.