These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

600 related articles for article (PubMed ID: 24689940)

  • 1. A switch from inter-ocular to inter-hemispheric suppression following monocular deprivation in the rat visual cortex.
    Pietrasanta M; Restani L; Cerri C; Olcese U; Medini P; Caleo M
    Eur J Neurosci; 2014 Jul; 40(1):2283-92. PubMed ID: 24689940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional masking of deprived eye responses by callosal input during ocular dominance plasticity.
    Restani L; Cerri C; Pietrasanta M; Gianfranceschi L; Maffei L; Caleo M
    Neuron; 2009 Dec; 64(5):707-18. PubMed ID: 20005826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binocular Disparity Selectivity Weakened after Monocular Deprivation in Mouse V1.
    Scholl B; Pattadkal JJ; Priebe NJ
    J Neurosci; 2017 Jul; 37(27):6517-6526. PubMed ID: 28576937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Callosal contribution to ocular dominance in rat primary visual cortex.
    Cerri C; Restani L; Caleo M
    Eur J Neurosci; 2010 Oct; 32(7):1163-9. PubMed ID: 20726891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term Monocular Deprivation during Juvenile Critical Period Disrupts Binocular Integration in Mouse Visual Thalamus.
    Huh CYL; Abdelaal K; Salinas KJ; Gu D; Zeitoun J; Figueroa Velez DX; Peach JP; Fowlkes CC; Gandhi SP
    J Neurosci; 2020 Jan; 40(3):585-604. PubMed ID: 31767678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual hemispheric dominance induced in split brain cats during development: a model of deficient interhemispheric transfer derived from physiological evidence in single visual cortex cells.
    Yinon U
    Behav Brain Res; 1994 Oct; 64(1-2):97-110. PubMed ID: 7840897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity.
    Mrsic-Flogel TD; Hofer SB; Ohki K; Reid RC; Bonhoeffer T; Hübener M
    Neuron; 2007 Jun; 54(6):961-72. PubMed ID: 17582335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation.
    Heynen AJ; Yoon BJ; Liu CH; Chung HJ; Huganir RL; Bear MF
    Nat Neurosci; 2003 Aug; 6(8):854-62. PubMed ID: 12886226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascular endothelial growth factor B prevents the shift in the ocular dominance distribution of visual cortical neurons in monocularly deprived rats.
    Shan L; Yong H; Song Q; Wei Y; Qin R; Zhang G; Xu M; Zhang S
    Exp Eye Res; 2013 Apr; 109():17-21. PubMed ID: 23370270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Swept contrast visual evoked potentials and their plasticity following monocular deprivation in mice.
    Lickey ME; Pham TA; Gordon B
    Vision Res; 2004 Dec; 44(28):3381-7. PubMed ID: 15536006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y
    Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Differentiation of Mouse Visual Cortical Areas Depends upon Early Binocular Experience.
    Salinas KJ; Huh CYL; Zeitoun JH; Gandhi SP
    J Neurosci; 2021 Feb; 41(7):1470-1488. PubMed ID: 33376158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of strabismus and monocular deprivation on the eye preference of neurons in the visual claustrum of the cat.
    Perkel DJ; LeVay S
    J Comp Neurol; 1984 Dec; 230(2):269-77. PubMed ID: 6512021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of vision by monocular deprivation in adult mice.
    Prusky GT; Alam NM; Douglas RM
    J Neurosci; 2006 Nov; 26(45):11554-61. PubMed ID: 17093076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity.
    Liao DS; Krahe TE; Prusky GT; Medina AE; Ramoa AS
    J Neurophysiol; 2004 Oct; 92(4):2113-21. PubMed ID: 15102897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A semi-persistent adult ocular dominance plasticity in visual cortex is stabilized by activated CREB.
    Pham TA; Graham SJ; Suzuki S; Barco A; Kandel ER; Gordon B; Lickey ME
    Learn Mem; 2004; 11(6):738-47. PubMed ID: 15537732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlated binocular activity guides recovery from monocular deprivation.
    Kind PC; Mitchell DE; Ahmed B; Blakemore C; Bonhoeffer T; Sengpiel F
    Nature; 2002 Mar; 416(6879):430-3. PubMed ID: 11919632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adult visual experience promotes recovery of primary visual cortex from long-term monocular deprivation.
    Fischer QS; Aleem S; Zhou H; Pham TA
    Learn Mem; 2007 Sep; 14(9):573-80. PubMed ID: 17761542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulus for rapid ocular dominance plasticity in visual cortex.
    Rittenhouse CD; Siegler BA; Voelker CC; Shouval HZ; Paradiso MA; Bear MF
    J Neurophysiol; 2006 May; 95(5):2947-50. PubMed ID: 16481452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ocular dominance and receptive field properties of visual cortex cells of cats following long-term transection of the optic chiasm and monocular deprivation during adulthood.
    Yinon U; Milgram A
    Behav Brain Res; 1990 May; 38(2):163-73. PubMed ID: 2363836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.