These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24689995)

  • 1. Extended-nanofluidics: fundamental technologies, unique liquid properties, and application in chemical and bio analysis methods and devices.
    Mawatari K; Kazoe Y; Shimizu H; Pihosh Y; Kitamori T
    Anal Chem; 2014 May; 86(9):4068-77. PubMed ID: 24689995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microchip-based cellular biochemical systems for practical applications and fundamental research: from microfluidics to nanofluidics.
    Xu Y; Jang K; Yamashita T; Tanaka Y; Mawatari K; Kitamori T
    Anal Bioanal Chem; 2012 Jan; 402(1):99-107. PubMed ID: 21845527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extended nanospace chemical systems on a chip for new analytical technology.
    Mawatari K; Tsukahara T; Kitamori T
    Analyst; 2011 Aug; 136(15):3051-9. PubMed ID: 21267482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Streaming potential/current measurement system for investigation of liquids confined in extended-nanospace.
    Morikawa K; Mawatari K; Kato M; Tsukahara T; Kitamori T
    Lab Chip; 2010 Apr; 10(7):871-5. PubMed ID: 20379568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated fluidic systems on a nanometer scale and the study on behavior of liquids in small confinement.
    Hibara A; Tsukahara T; Kitamori T
    J Chromatogr A; 2009 Jan; 1216(4):673-83. PubMed ID: 19121833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micromachined silicon attenuated total reflectance infrared spectroscopy: an emerging detection method in micro/nanofluidics.
    Karabudak E
    Electrophoresis; 2014 Feb; 35(2-3):236-44. PubMed ID: 24151006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities.
    Andersson H; van den Berg A
    Lab Chip; 2004 Apr; 4(2):98-103. PubMed ID: 15052347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technologies for nanofluidic systems: top-down vs. bottom-up--a review.
    Mijatovic D; Eijkel JC; van den Berg A
    Lab Chip; 2005 May; 5(5):492-500. PubMed ID: 15856084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic technologies in drug discovery.
    Pihl J; Karlsson M; Chiu DT
    Drug Discov Today; 2005 Oct; 10(20):1377-83. PubMed ID: 16253876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated extended-nano chemical systems on a chip.
    Tsukahara T; Mawatari K; Kitamori T
    Chem Soc Rev; 2010 Mar; 39(3):1000-13. PubMed ID: 20179821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices.
    Yamada M; Seki M
    Anal Chem; 2004 Feb; 76(4):895-9. PubMed ID: 14961718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale.
    Wang M; Zhao C; Miao X; Zhao Y; Rufo J; Liu YJ; Huang TJ; Zheng Y
    Small; 2015 Sep; 11(35):4423-44. PubMed ID: 26140612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extended-nano fluidic systems for analytical and chemical technologies.
    Mawatari K; Tsukahara T; Sugii Y; Kitamori T
    Nanoscale; 2010 Sep; 2(9):1588-95. PubMed ID: 20820689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. When microfluidic devices go bad. How does fouling occur in microfluidic devices, and what can be done about it?
    Mukhopadhyay R
    Anal Chem; 2005 Nov; 77(21):429A-432A. PubMed ID: 16285143
    [No Abstract]   [Full Text] [Related]  

  • 15. Development of a pressure-driven nanofluidic control system and its application to an enzymatic reaction.
    Tsukahara T; Mawatari K; Hibara A; Kitamori T
    Anal Bioanal Chem; 2008 Aug; 391(8):2745-52. PubMed ID: 18581104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow control methods and devices in micrometer scale channels.
    Shoji S; Kawai K
    Top Curr Chem; 2011; 304():1-25. PubMed ID: 21526436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanofluidics: high mobility in tight spaces.
    Daiguji H
    Nat Nanotechnol; 2010 Dec; 5(12):831-2. PubMed ID: 21131993
    [No Abstract]   [Full Text] [Related]  

  • 18. Dielectric constant of liquids confined in the extended nanospace measured by a streaming potential method.
    Morikawa K; Kazoe Y; Mawatari K; Tsukahara T; Kitamori T
    Anal Chem; 2015 Feb; 87(3):1475-9. PubMed ID: 25569302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attoliter-scale dispensing in nanofluidic channels.
    Kovarik ML; Jacobson SC
    Anal Chem; 2007 Feb; 79(4):1655-60. PubMed ID: 17297969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.