These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24689995)

  • 21. Nanofluidics: A New Arena for Materials Science.
    Xu Y
    Adv Mater; 2018 Jan; 30(3):. PubMed ID: 29094401
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a measurement technique for ion distribution in an extended nanochannel by super-resolution-laser-induced fluorescence.
    Kazoe Y; Mawatari K; Sugii Y; Kitamori T
    Anal Chem; 2011 Nov; 83(21):8152-7. PubMed ID: 21942883
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inorganic nanotubes: a novel platform for nanofluidics.
    Goldberger J; Fan R; Yang P
    Acc Chem Res; 2006 Apr; 39(4):239-48. PubMed ID: 16618091
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Note: Three-omega method to measure thermal properties of subnanoliter liquid samples.
    Park BK; Park J; Kim D
    Rev Sci Instrum; 2010 Jun; 81(6):066104. PubMed ID: 20590275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The application of microfluidics in biology.
    Holmes D; Gawad S
    Methods Mol Biol; 2010; 583():55-80. PubMed ID: 19763459
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Micropatterning with a liquid crystal display (LCD) projector.
    Itoga K; Kobayashi J; Yamato M; Okano T
    Methods Cell Biol; 2014; 119():141-58. PubMed ID: 24439283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Droplet microfluidics based microseparation systems.
    Xiao Z; Niu M; Zhang B
    J Sep Sci; 2012 Jun; 35(10-11):1284-93. PubMed ID: 22733508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
    Hong L; Pan T
    Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurement and validation of cell-based assays with microfluidics at the National Institute of Standards and Technology.
    Cooksey GA; Atencia J; Forry SP
    Bioanalysis; 2012 Aug; 4(15):1849-54. PubMed ID: 22943616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing.
    Jahn A; Vreeland WN; Gaitan M; Locascio LE
    J Am Chem Soc; 2004 Mar; 126(9):2674-5. PubMed ID: 14995164
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of lab-on chip platforms by hot embossing and photo patterning.
    Maurya DK; Ng WY; Mahabadi KA; Liang YN; Rodríguez I
    Biotechnol J; 2007 Nov; 2(11):1381-8. PubMed ID: 17886237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Micro- and nanomechanical sensors for environmental, chemical, and biological detection.
    Waggoner PS; Craighead HG
    Lab Chip; 2007 Oct; 7(10):1238-55. PubMed ID: 17896006
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic chemical analysis systems.
    Livak-Dahl E; Sinn I; Burns M
    Annu Rev Chem Biomol Eng; 2011; 2():325-53. PubMed ID: 22432622
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Basic technologies for droplet microfluidics.
    Zeng S; Liu X; Xie H; Lin B
    Top Curr Chem; 2011; 304():69-90. PubMed ID: 21598102
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Micro and nanofluidics for high throughput drug screening.
    Mathekga BSP; Nxumalo Z; Thimiri Govinda Raj DB
    Prog Mol Biol Transl Sci; 2022; 187(1):93-120. PubMed ID: 35094783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nano X-ray diffractometry device for nanofluidics.
    Mawatari K; Koreeda H; Ohara K; Kohara S; Yoshida K; Yamaguchi T; Kitamori T
    Lab Chip; 2018 Apr; 18(8):1259-1264. PubMed ID: 29594269
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Precise temperature control in microfluidic devices using Joule heating of ionic liquids.
    de Mello AJ; Habgood M; Lancaster NL; Welton T; Wootton RC
    Lab Chip; 2004 Oct; 4(5):417-9. PubMed ID: 15472723
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidics in the "open space" for performing localized chemistry on biological interfaces.
    Kaigala GV; Lovchik RD; Delamarche E
    Angew Chem Int Ed Engl; 2012 Nov; 51(45):11224-40. PubMed ID: 23111955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advances in Label-Free Detections for Nanofluidic Analytical Devices.
    Le THH; Shimizu H; Morikawa K
    Micromachines (Basel); 2020 Sep; 11(10):. PubMed ID: 32977690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.