BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24689999)

  • 1. Heat shock protein 70 is involved in malignant behaviors and chemosensitivities to cisplatin in cervical squamous cell carcinoma cells.
    Yoshidomi K; Murakami A; Yakabe K; Sueoka K; Nawata S; Sugino N
    J Obstet Gynaecol Res; 2014 May; 40(5):1188-96. PubMed ID: 24689999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA-181a enhances the chemoresistance of human cervical squamous cell carcinoma to cisplatin by targeting PRKCD.
    Chen Y; Ke G; Han D; Liang S; Yang G; Wu X
    Exp Cell Res; 2014 Jan; 320(1):12-20. PubMed ID: 24183997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic identification of predictive tissue biomarkers of sensitive to neoadjuvant chemotherapy in squamous cervical cancer.
    Guo L; Zhang C; Zhu J; Yang Y; Lan J; Su G; Xie X
    Life Sci; 2016 Apr; 151():102-108. PubMed ID: 26947588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Germ cell-specific heat shock protein 70-2 is expressed in cervical carcinoma and is involved in the growth, migration, and invasion of cervical cells.
    Garg M; Kanojia D; Saini S; Suri S; Gupta A; Surolia A; Suri A
    Cancer; 2010 Aug; 116(16):3785-96. PubMed ID: 20564126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficacy of Hsp90 inhibition for induction of apoptosis and inhibition of growth in cervical carcinoma cells in vitro and in vivo.
    Schwock J; Pham NA; Cao MP; Hedley DW
    Cancer Chemother Pharmacol; 2008 Apr; 61(4):669-81. PubMed ID: 17579866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Inhibiting HSP70 expression enhances cisplatin sensitivity of cervical cancer cells].
    Liu J; Liu J; Li SZ; Zheng YA; Guo SY; Wang X
    Nan Fang Yi Ke Da Xue Xue Bao; 2016 Apr; 37(4):475-481. PubMed ID: 28446399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ZM447439, the Aurora kinase B inhibitor, suppresses the growth of cervical cancer SiHa cells and enhances the chemosensitivity to cisplatin.
    Zhang L; Zhang S
    J Obstet Gynaecol Res; 2011 Jun; 37(6):591-600. PubMed ID: 21159048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human papilloma virus 16 E6 RNA interference enhances cisplatin and death receptor-mediated apoptosis in human cervical carcinoma cells.
    Tan S; Hougardy BM; Meersma GJ; Schaap B; de Vries EG; van der Zee AG; de Jong S
    Mol Pharmacol; 2012 May; 81(5):701-9. PubMed ID: 22328720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of combining epidermal growth factor receptor inhibitors and cisplatin on proliferation and apoptosis of oral squamous cell carcinoma cells.
    Takaoka S; Iwase M; Uchida M; Yoshiba S; Kondo G; Watanabe H; Ohashi M; Nagumo M; Shintani S
    Int J Oncol; 2007 Jun; 30(6):1469-76. PubMed ID: 17487368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiation-induced cell death is independent of the apoptotic signals mediated by death-associated protein kinase in human cervical squamous cell carcinoma cells.
    Tanaka T; Bai T; Yukawa K; Umesaki N
    Oncol Rep; 2005 Oct; 14(4):949-55. PubMed ID: 16142356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Adenovirus-delivered tissue inhibitor of metalloproteinases-3 transfection increases the sensitivity of cervical cancer cells to cisplatin].
    Zhang Y; Lin C; Qian HL; Lang JH; Fu M; Zhang XY; Liang X; Duan H; Xiang Y
    Zhonghua Zhong Liu Za Zhi; 2007 Jan; 29(1):25-9. PubMed ID: 17575689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of heat shock protein 70 and c-myc in cervical carcinoma.
    Abd el All H; Rey A; Duvillard P
    Anticancer Res; 1998; 18(3A):1533-6. PubMed ID: 9673366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knockdown of long noncoding RNA urothelial cancer-associated 1 enhances cisplatin chemosensitivity in tongue squamous cell carcinoma cells.
    Wang J; Li L; Wu K; Ge W; Zhang Z; Gong L; Yuan D
    Pharmazie; 2016 Oct; 71(10):598-602. PubMed ID: 29441929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting the heat shock factor 1 by RNA interference: a potent tool to enhance hyperthermochemotherapy efficacy in cervical cancer.
    Rossi A; Ciafrè S; Balsamo M; Pierimarchi P; Santoro MG
    Cancer Res; 2006 Aug; 66(15):7678-85. PubMed ID: 16885369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat shock protein 90 (HSP90) is overexpressed in p16-negative oropharyngeal squamous cell carcinoma, and its inhibition in vitro potentiates the effects of chemoradiation.
    Patel K; Wen J; Magliocca K; Muller S; Liu Y; Chen ZG; Saba N; Diaz R
    Cancer Chemother Pharmacol; 2014 Nov; 74(5):1015-22. PubMed ID: 25205430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual apoptotic effect of Xrel3 c-Rel/NF-kappaB homolog in human cervical cancer cells.
    Shehata M; Shehata M; Shehata F; Pater A
    Cell Biol Int; 2004; 28(12):895-904. PubMed ID: 15566959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterotrimeric stimulatory GTP-binding proteins inhibit cisplatin-induced apoptosis by increasing X-linked inhibitor of apoptosis protein expression in cervical cancer cells.
    Cho EA; Oh JM; Kim SY; Kim Y; Juhnn YS
    Cancer Sci; 2011 Apr; 102(4):837-44. PubMed ID: 21255191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Expression of Notch intracellular domain in cervical cancer and effect of DAPT on cervical cancer cell].
    Sun XM; Wen HW; Chen CL; Liao QP
    Zhonghua Fu Chan Ke Za Zhi; 2009 May; 44(5):369-73. PubMed ID: 19573314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cisplatin treatment modulates Annexin A1 and inhibitor of differentiation to DNA 1 expression in cervical cancer cells.
    Prates J; Moreli JB; Gimenes AD; Biselli JM; Pires D'Avila SCG; Sandri S; Farsky SHP; Rodrigues-Lisoni FC; Oliani SM
    Biomed Pharmacother; 2020 Sep; 129():110331. PubMed ID: 32768930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. STI-571 (Gleevec) potentiates the effect of cisplatin in inhibiting the proliferation of head and neck squamous cell carcinoma in vitro.
    Wang-Rodriguez J; Lopez JP; Altuna X; Chu TS; Weisman RA; Ongkeko WM
    Laryngoscope; 2006 Aug; 116(8):1409-16. PubMed ID: 16885745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.