These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 24690467)

  • 1. Effective harvesting of low surface-hydrophobicity microalgae by froth flotation.
    Garg S; Wang L; Schenk PM
    Bioresour Technol; 2014 May; 159():437-41. PubMed ID: 24690467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flotation of marine microalgae: effect of algal hydrophobicity.
    Garg S; Li Y; Wang L; Schenk PM
    Bioresour Technol; 2012 Oct; 121():471-4. PubMed ID: 22858117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gemini surfactant: A novel flotation collector for harvesting of microalgae by froth flotation.
    Huang Z; Cheng C; Liu Z; Luo W; Zhong H; He G; Liang C; Li L; Deng L; Fu W
    Bioresour Technol; 2019 Mar; 275():421-424. PubMed ID: 30611623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flotation: A promising microalgae harvesting and dewatering technology for biofuels production.
    Ndikubwimana T; Chang J; Xiao Z; Shao W; Zeng X; Ng IS; Lu Y
    Biotechnol J; 2016 Mar; 11(3):315-26. PubMed ID: 26928758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low energy harvesting of hydrophobic microalgae (Tribonema sp.) by electro-flotation without coagulation.
    Qi S; Chen J; Hu Y; Hu Z; Zhan X; Stengel DB
    Sci Total Environ; 2022 Sep; 838(Pt 1):155866. PubMed ID: 35568179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Additive-free harvesting of oleaginous phagotrophic microalga by oil and air flotation.
    Hosseini M; Starvaggi HA; Ju LK
    Bioprocess Biosyst Eng; 2016 Jul; 39(7):1181-90. PubMed ID: 27025209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation.
    Cheng YL; Juang YC; Liao GY; Tsai PW; Ho SH; Yeh KL; Chen CY; Chang JS; Liu JC; Chen WM; Lee DJ
    Bioresour Technol; 2011 Jan; 102(1):82-7. PubMed ID: 20627550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cationic surfactant-based method for simultaneous harvesting and cell disruption of a microalgal biomass.
    Huang WC; Kim JD
    Bioresour Technol; 2013 Dec; 149():579-81. PubMed ID: 24128606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel method to harvest Chlorella sp. by co-flocculation/air flotation.
    Zhang H; Lin Z; Tan D; Liu C; Kuang Y; Li Z
    Biotechnol Lett; 2017 Jan; 39(1):79-84. PubMed ID: 27654824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the cell-collector-bubble interfacial interactions during microalgae harvesting using foam flotation.
    Nie X; Zhang H; Cheng S; Mubashar M; Xu C; Li Y; Tan D; Zhang X
    Sci Total Environ; 2022 Feb; 806(Pt 4):150901. PubMed ID: 34653469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective harvesting of microalgae by coagulation-flotation.
    Xia L; Li Y; Huang R; Song S
    R Soc Open Sci; 2017 Nov; 4(11):170867. PubMed ID: 29291079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harvesting of microalgae by flocculation with poly (γ-glutamic acid).
    Zheng H; Gao Z; Yin J; Tang X; Ji X; Huang H
    Bioresour Technol; 2012 May; 112():212-20. PubMed ID: 22425514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective harvesting of the microalgae Chlorella vulgaris via flocculation-flotation with bioflocculant.
    Lei X; Chen Y; Shao Z; Chen Z; Li Y; Zhu H; Zhang J; Zheng W; Zheng T
    Bioresour Technol; 2015 Dec; 198():922-5. PubMed ID: 26391967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of growth phase on the surface properties of three oleaginous microalgae (Botryococcus sp. FACGB-762, Chlorella sp. XJ-445 and Desmodesmus bijugatus XJ-231).
    Xia L; Huang R; Li Y; Song S
    PLoS One; 2017; 12(10):e0186434. PubMed ID: 29045481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient microalgae harvesting using a thermal flotation method with response surface methodology.
    Zou X; Xu K; Wen H; Xue Y; Qu Y; Li Y
    Water Sci Technol; 2019 Aug; 80(3):426-436. PubMed ID: 31596254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation on the role of surfactants in bubble-algae interaction in flotation harvesting of Chlorella vulgaris.
    Shen Z; Li Y; Wen H; Ren X; Liu J; Yang L
    Sci Rep; 2018 Feb; 8(1):3303. PubMed ID: 29459703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymers as bubble surface modifiers in the flotation of algae.
    Henderson RK; Parsons SA; Jefferson B
    Environ Technol; 2010 Jun; 31(7):781-90. PubMed ID: 20586240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flotation of algae for water reuse and biomass production: role of zeta potential and surfactant to separate algal particles.
    Kwak DH; Kim MS
    Water Sci Technol; 2015; 72(5):762-9. PubMed ID: 26287835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic digestate as substrate for microalgae culture: the role of ammonium concentration on the microalgae productivity.
    Uggetti E; Sialve B; Latrille E; Steyer JP
    Bioresour Technol; 2014; 152():437-43. PubMed ID: 24316486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Buoy-bead flotation harvesting of the microalgae Chlorella vulgaris using surface-layered polymeric microspheres: A novel approach.
    Xu K; Zou X; Wen H; Xue Y; Zhao S; Li Y
    Bioresour Technol; 2018 Nov; 267():341-346. PubMed ID: 30029180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.