These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 24690472)

  • 21. Improving energy resolution of EELS spectra: an alternative to the monochromator solution.
    Gloter A; Douiri A; Tencé M; Colliex C
    Ultramicroscopy; 2003 Sep; 96(3-4):385-400. PubMed ID: 12871803
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the first application of the Richardson-Lucy algorithm to resolve plasmonic resonances in EELS spectra obtained with a monochromated electron beam.
    Walther RM; Gerthsen D
    Microsc Microanal; 2014 Aug; 20(4):993-4. PubMed ID: 25410598
    [No Abstract]   [Full Text] [Related]  

  • 23. Mapping of valence energy losses via energy-filtered annular dark-field scanning transmission electron microscopy.
    Gu L; Sigle W; Koch CT; Nelayah J; Srot V; van Aken PA
    Ultramicroscopy; 2009 Aug; 109(9):1164-70. PubMed ID: 19525066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Response to: on the first application of the Richardson-Lucy algorithm to resolve plasmonic resonances in EELS spectra obtained with a monochromated electron beam.
    Bellido E; Botton G
    Microsc Microanal; 2014 Aug; 20(4):995. PubMed ID: 25410599
    [No Abstract]   [Full Text] [Related]  

  • 25. Comparison of Si and Ge low-loss spectra to interpret the Ge contrast in EFTEM images of Si(1-x) Ge(x) nanostructures.
    Pantel R; Cheynet MC; Tichelaar FD
    Micron; 2006; 37(7):657-65. PubMed ID: 16529938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-energy resolution electron energy-loss spectroscopy study of interband transitions characteristic to single-walled carbon nanotubes.
    Sato Y; Terauchi M
    Microsc Microanal; 2014 Jun; 20(3):807-14. PubMed ID: 24685359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Observing Plasmon Damping Due to Adhesion Layers in Gold Nanostructures Using Electron Energy Loss Spectroscopy.
    Madsen SJ; Esfandyarpour M; Brongersma ML; Sinclair R
    ACS Photonics; 2017 Feb; 4(2):268-274. PubMed ID: 28944259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improving the energy resolution of X-ray and electron energy-loss spectra.
    Egerton RF; Qian H; Malac M
    Micron; 2006; 37(4):310-5. PubMed ID: 16376551
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monochromated STEM with a 30 meV-wide, atom-sized electron probe.
    Krivanek OL; Lovejoy TC; Dellby N; Carpenter RW
    Microscopy (Oxf); 2013 Feb; 62(1):3-21. PubMed ID: 23335810
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fourier-ratio deconvolution and its Bayesian equivalent.
    Egerton RF; Wang F; Malac M; Moreno MS; Hofer F
    Micron; 2008 Aug; 39(6):642-7. PubMed ID: 18036824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improvement of the energy resolution of energy dispersive spectrometers (EDS) using Richardson-Lucy deconvolution.
    Brodusch N; Zaghib K; Gauvin R
    Ultramicroscopy; 2020 Feb; 209():112886. PubMed ID: 31739189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. First experimental test of a new monochromated and aberration-corrected 200 kV field-emission scanning transmission electron microscope.
    Walther T; Quandt E; Stegmann H; Thesen A; Benner G
    Ultramicroscopy; 2006; 106(11-12):963-9. PubMed ID: 16870338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring the capabilities of monochromated electron energy loss spectroscopy in the infrared regime.
    Hachtel JA; Lupini AR; Idrobo JC
    Sci Rep; 2018 Apr; 8(1):5637. PubMed ID: 29618757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conductivity models for electron energy loss spectroscopy of graphene in a scanning transmission electron microscope with high energy resolution.
    Lyon K; Mowbray DJ; Miskovic ZL
    Ultramicroscopy; 2020 Jul; 214():113012. PubMed ID: 32413682
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures.
    Hobbs RG; Manfrinato VR; Yang Y; Goodman SA; Zhang L; Stach EA; Berggren KK
    Nano Lett; 2016 Jul; 16(7):4149-57. PubMed ID: 27295061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optoelectronic properties of InAlN/GaN distributed bragg reflector heterostructure examined by valence electron energy loss spectroscopy.
    Eljarrat A; Estradé S; Gačević Z; Fernández-Garrido S; Calleja E; Magén C; Peiró F
    Microsc Microanal; 2012 Oct; 18(5):1143-54. PubMed ID: 23058502
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A proximal retarding field analyzer for scanning probe energy loss spectroscopy.
    Bauer K; Murphy S; Palmer RE
    Nanotechnology; 2017 Mar; 28(10):105711. PubMed ID: 28082730
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electron energy-loss spectroscopy of branched gap plasmon resonators.
    Raza S; Esfandyarpour M; Koh AL; Mortensen NA; Brongersma ML; Bozhevolnyi SI
    Nat Commun; 2016 Dec; 7():13790. PubMed ID: 27982030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of extraterrestrial particles using monochromated electron energy-loss spectroscopy.
    Erni R; Browning ND; Dai ZR; Bradley JP
    Micron; 2005; 36(4):369-79. PubMed ID: 15857776
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of monochromated TEM for ultimate resolution imaging and ultrahigh resolution electron energy loss spectroscopy.
    Lopatin S; Cheng B; Liu WT; Tsai ML; He JH; Chuvilin A
    Ultramicroscopy; 2018 Jan; 184(Pt A):109-115. PubMed ID: 28886488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.